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Lecture 1 Introduction to statically determinate/ indeterminate structure with reference to 

2D and 3D structures. Free body diagram of structure. 

 

Course Outline of AR Structural Analysis (3-1-0) CR-04 

Module – I (10 Hrs) 

1. Introduction to statically determinate/ indeterminate structure with reference to 2D 

and 3D structures. Free body diagram of structure. 

2. Introduction to kinematically determinate/indeterminate structures with reference to 

2D and 3D structures. Degree of freedom. 

3. B.M. and S.F. diagrams for different loading on simply supported beam, cantilever 

and overhanging beams. 

4. B.M. shear and normal thrust of three hinged arches. 

 

Module – II (10 Hrs) 

5. Deflection of statically determinate beams: 

Integration method, Moment area method, Conjugate beam method. 

6. Deflection of statically determinate beams by energy methods- strain energy method, 

castiglianos theorems, reciprocal theorem, unit load method. Deflection of pin-jointed 

trusses, Williot-Mohr diagram. 

 

 Module – III (6 Hrs) 

7. M. and S.F. diagrams for statically indeterminate beams – propped cantilever and 

fixed beams. 

8. Application of three moment theorem to continuous and other indeterminate beams. 

Module – IV (8 Hrs) 

9. ILD for determinate structures for reactions at supports, S.F. at given section, B.M. at 

a given section, Maximum shear and maximum bending moment at given section, 

Problems relating to series of wheel loads, UDL less than or greater than the span of 

the beam, Absolute Maximum bending moment. 

 

10. ILD for B.M., S.F., normal thrust and radial shear of a three hinged arch. 

 

Module – V (8Hrs) 

11. Suspension cables, three hinged stiffening girders. 

12. Introduction to space frames. 

 

1.1 Introduction 

 

The structure of a building (or other object) is the part which is responsible for maintaining 

the shape of the building under the influence of the forces, loads and other environmental 

factors to which it is subjected. It is important that the structure as a whole (or any part of it) 
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does not fall down, break or deform to an unacceptable degree when subjected to such forces 

or loads. The study of structures involves the analysis of the forces and stresses occurring 

within a structure and the design of suitable components to cater for such forces and stresses. 

 

    As an analogy, consider the human body. Human body comprises a skeleton of 206 bones 

which constitutes the structure of human body. If any of those bones were to break, or if any 

of the joints between those bones were to disconnect or seize up, the injured body would 

‘fail’ structurally (and cause a great deal of pain). 

 

Examples of structural components (or ‘members’, as Engineers and Architects call them) 

include: 

• steel beams, columns, roof trusses and space frames; 

• reinforced concrete beams, columns, slabs, retaining walls and foundations; 

• timber joists, columns, glulam beams and roof trusses; 

• masonry walls and columns. 

 

1.2 What is an engineer? 

 

  The word ‘engineer’ comes from the French word ingénieur, which refers to someone who 

uses his/her ingenuity to solve problems. An engineer is a problem-solver. 

 

A structural engineer solves the problem of ensuring that a building – or other structure – is 

adequate (in terms of strength, stability, cost, etc.) for its intended use.  

 

1.3 The structural engineer in the context of related professions 

 

some of the professionals involved in the design of buildings include the following: 

 

• the architect; 

• the structural engineer; 

• the quantity surveyor. 

 

Of course, this is not an exhaustive list. There are many other professionals involved in 

building design (for example, building surveyors and project managers) and many more 

trades and professions involved in the actual construction of buildings. 

 

The architect is responsible for the design of a building with particular regard to its 

appearance and environmental qualities such as light levels and noise insulation. 

 

The structural engineer is responsible for ensuring that the building can safely withstand all 

the forces to which it is likely to be subjected, and that it will not deflect or crack unduly in 

use. 

 

The quantity surveyor is responsible for measuring and pricing the work to be undertaken – 

and for keeping track of costs as the work proceeds. 

 

So, in short: 

 

(1) The architect makes sure the building looks good. 

(2) The (structural) engineer ensures it will stand up. 
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(3) The quantity surveyor ensures its construction is economical. 

 

1.4 Structural understanding 

 

The basic function of a structure is to transmit loads from the position of application of the 

load to the point of support and thus to the foundations in the ground. Let us for the time 

being consider a load as being any force acting externally on a structure.) 

 

Any structure must satisfy the following criteria: 

(1) Aesthetics (it must look nice). 

(2) Economy (it mustn’t cost more than the client can afford – and less if possible). 

(3) Ease of maintenance. 

(4) Durability. This means that the materials used must be resistant to corrosion, spalling 

(pieces falling off), chemical attack, rot or insect attack. 

(5) Fire resistance. While few materials can completely resist the effects of fire, it is 

important for a building to resist fire long enough for its occupants to be safely evacuated. 

 

In order to ensure that a structure behaves in this way, one need to develop an understanding 

and awareness of how the structure works. 

 

1.5 Safety and serviceability 

 

There are two main requirements of any structure: it must be safe and it must be serviceable. 

‘Safe’ means that the structure should not collapse – either in whole or in part. ‘Serviceable’ 

means that the structure should not deform unduly under the effects of deflection, cracking or 

vibration. 

 

Safety 

 

  A structure must carry the expected loads without collapsing as a whole and without any 

part of it collapsing. Safety in this respect depends on two factors: 

 

(1) The loading the structure is designed to carry has been correctly assessed. 

(2) The strength of the materials used in the structure has not deteriorated. 

 

From this it is evident that one needs to know how to determine the load on any part of a 

structure. Furthermore, One also needs to know that materials deteriorate in time if not 

properly maintained: steel corrodes, concrete may spall or suffer carbonation, timber will rot. 

The structural engineer must consider this when designing any particular building. 

Serviceability 

 

A structure must be designed in such a way that it doesn’t deflect or crack unduly in use. It is 

difficult or impossible to completely eliminate these things – the important thing is that the 

deflection and cracking are kept within certain limits. It must also be ensured that vibration 

does not have an adverse effect on the structure – this is particularly important in parts of 

buildings containing plant or machinery. 

 

If, when one walks across the floor of a building, one feels the floor deflect or ‘give’ 

underneath one’s feet, it may lead one to be concerned about the integrity of the structure. 

Excessive deflection does not necessarily mean that the floor is about to collapse, but because 
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it may lead to such concerns, deflection must be ‘controlled’; in other words, it must be kept 

within certain limits. To take another example, if a lintel above a doorway deflects too much, 

it may cause warping of the door frame below it and, consequently, the door itself may not 

open or close properly. Cracking is ugly and may or may not be indicative of a structural 

problem. But it may, in itself, lead to problems. For example, if cracking occurs on the 

outside face of a reinforced concrete wall then rain may penetrate and cause corrosion of the 

steel reinforcement within the concrete. 

 

1.6 Composition of a building structure 

 

 A building structure contains various elements, the adequacy of each of which is the 

responsibility of the structural engineer.  

 

A roof protects people and equipment in a building from weather. Walls can have one or 

more of several functions. The most obvious one is load bearing – in other words, supporting 

any walls, floors or roofs above it. But not all walls are load bearing. Other functions of a 

wall include the following: 

 

• partitioning, or dividing, rooms within a building – and thus defining their shape and 

extent; 

•  weatherproofing; 

• thermal insulation – keeping heat in (or out); 

• noise insulation – keeping noise out (or in); 

• fire resistance; 

• security and privacy; 

• resisting lateral (horizontal) loads such as those due to retained earth, wind or water. 

 

A floor provides support for the occupants, furniture and equipment in a building. Floors on 

an upper level of a building are always suspended, which means that they span between 

supporting walls or beams. Ground floor slabs may sit directly on the ground beneath. 

 

Staircases provide for vertical movement between different levels in a building. 

 

Foundations represent the interface between the building’s structure and the ground beneath 

it. A foundation transmits all the loads from a building into the ground in such a way that 

settlement (particularly uneven settlement) of the building is limited and failure of the 

underlying soil is avoided. 

 

 

In a building it is frequently necessary to support floors or walls without any interruption or 

division of the space below. In this case, a horizontal element called a beam will be used. A 

beam transmits the loads it supports to columns or walls at the beam’s ends. 

 

A column is a vertical loadbearing element which usually supports beams and/or other 

columns above. Laymen often call them pillars or poles or posts. Individual elements of a 

structure, such as beams or columns, are often referred to as members. 

 

1.7 Need to learn about structures 
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If one is studying architecture, one may be wondering why one needs to study structures at 

all. However, as an architect, it is important that one understands the principles of structural 

behaviour. On larger projects architects work in inter-disciplinary teams which usually 

include structural engineers. It is therefore important to understand about structural 

engineering. Remember – if one has difficulty in getting one’s model to stand up, it is 

unlikely that the real thing will stand up either! 

 

1.8 Basic aspects of structures 

 

Structural engineers use the following words (amongst others, of course) in technical 

discussions: 

 

• force 

• reaction 

• stress 

• moment. 

 

None of these words is new to any bode; they are all common English words that are used in 

everyday speech. However, in structural engineering each of these words has a particular 

meaning.  

 

Force 

 

A force is an influence on an object (for example, part of a building) that may cause 

movement. For example, the weight of people and furniture within a building causes a 

vertically downwards force on the floor, and wind blowing against a building causes a 

horizontal (or near horizontal) force on the external wall of the building. 

 

Reaction 

 

If one stands on a floor, the weight of your body will produce a downward force into the 

floor. The floor reacts to this by pushing upwards with a force of the same magnitude as the 

downward force due to your body weight. 

 

This upward force is called a reaction, as its very presence is a response to the downward 

force of your body. Similarly, a wall or a column supporting a beam will produce an upward 

reaction as a response to the downward forces the beam transmits to the wall (or column) and 

a foundation will produce an upward reaction to the downward force in the column or wall 

that the foundation is supporting. 

 

The same is true of horizontal forces and reactions. If one pushes horizontally against a wall, 

one’s body is applying a horizontal force to the wall – which the wall will oppose with a 

horizontal reaction. 

 

Stress 

 

Stress is internal pressure. A heavy vehicle parked on a road is applying pressure to the road 

surface – the heavier the vehicle and the smaller the contact area between the vehicle’s tyres 

and the road, the greater the pressure. 
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As a consequence of this pressure on the road surface, the parts of the road below the surface 

will experience a pressure which, because it is within an object (in this case, the road) is 

termed a stress. Because the effect of the vehicle’s weight is likely to be spread, or dispersed, 

as it is transmitted downwards within the road structure, the stress (internal pressure at a 

point) will decrease the further down you go within the road’s construction. So, stress is 

internal pressure at a given point within, for example, a beam, slab or column. It is likely that 

the intensity of the stress will vary from point to point within the object. Stress is a very 

important concept in structural engineering. 

 

Moment 

 

A moment is a turning effect. When one uses a spanner to tighten a nut, mechanically wind 

up a clock or turn the steering wheel on one’s car, one is applying a moment. 

 

1.9 How do structures or parts of structure behave 

 

1.9.1 Compression 

 

 

 
Figure 1.1 A column in compression 

 

Figure 1.1 (a) shows an elevation – that is, a side-on view – of a concrete column in a 

building. The column is supporting beams, floor slabs and other columns above and the load, 

or force, from all of these is acting downwards at the top of the column. This load is 

represented by the downward arrow at the top of the column. Intuitively, we know that the 

column is being squashed by this applied load – it is experiencing compression. 

 

A downward force must be opposed by an equal upward force (or reaction) if the building is 

stationary – as it should be. This reaction is represented by the upward arrow at the bottom of 

the column in Fig. 1.1 (a). Now, not only must the rules of equilibrium (total force up = total 

force down) apply for the column as a whole; these rules must apply at any and every point 

within a stationary structure. 
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Let’s consider what happens at the top of the column – specifically, point C in Fig. 1.1 (b). 

The downward force shown in Fig. 1.1 (a) at point C must be opposed by an upward force – 

also at point C. Thus there will be an upward force within the column at this point, as 

represented by the upward broken arrow in Fig. 1.1 (b). Now let’s consider what happens at 

the very bottom of the column – point D in Fig. 1.1 (b). The upward force shown in Fig. 1.1 

(a) at point D must be opposed by a downward force at the same point. This is represented by 

the downward broken arrow in Fig. 1.1 (b). 

 

Look at the direction of the broken arrows in Fig. 1.1 (b). These arrows represent the internal 

forces in the column. One will notice that they are pointing away from each other. This is 

always the case when a structural element is in compression: the arrows used to denote 

compression point away from each other. 

 

Tension 

 

 
Figure 1.2 A piece of string in tension 

 

Figure 1.2 shows a heavy metal block suspended from the ceiling of a room by a piece of 

string. The metal block, under the effects of gravity, is pulling the string downwards, as 

represented by the downward arrow. The string is thus being stretched and is therefore in 

tension. 

 

For equilibrium, this downward force must be opposed by an equal upward force at the point 

where the string is fixed to the ceiling. This opposing force is represented by an upward 

arrow in Fig. 1.2 (a). Note that if the ceiling wasn’t strong enough to carry the weight of the 

metal block, or the string was improperly tied to it, the weight would come crashing to the 

ground and there would be no upward force (or reaction) at this point. As with the column 

considered above, the rules of equilibrium (total force up = total force down) must apply at 

any and every point within this system if it is stationary. 

 

Let’s consider what happens at the top of the string. The upward force shown in Fig. 1.2 (a) 

at point E must be opposed by a downward force – also at this point. Thus there will be a 

downward force within the string at this point, as represented by the downward broken arrow 

in Fig. 1.2 (b). 
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Now let’s consider what happens at the very bottom of the string – at the point where the 

metal block is attached (point F). The downward force shown in Fig. 1.2 (a) at point F must 

be opposed by an upward force at this point. This upward force within the string at this point 

is represented by the upward broken arrow in Fig. 1.2 (b). 

 

Look at the direction of the broken arrows in Fig. 1.2 (b). These arrows represent the internal 

forces in the string. One will notice that they are pointing towards each other. This is always 

the case when a structural element is in tension: the arrows used to denote tension point 

towards each other. (An easy way to remember this principle is the letter T, which stands for 

both Towards and Tension.) 

 

The standard arrow notations for members in (a) tension and (b) compression are shown in 

Fig. 1.3.  

 

Note: Tension and compression are both examples of axial forces – they act along the axis (or 

centre line) of the structural member concerned. 

 

 
Figure 1.3 Arrow notations for tension and compression 

 

Bending 

 

Consider a simply supported beam (that is, a beam that simply rests on supports at its two 

ends) subjected to a central point load. The beam will tend to bend, as shown in Fig. 1.4.  

 

The extent to which the beam bends will depend on four things: 

(1) The material from which the beam is made. One would expect a beam made of rubber to 

bend more than a concrete beam of the same dimensions under a given load. 

 

(2) The cross-sectional characteristics of the beam. A large diameter wooden tree trunk is 

more difficult to bend than a thin twig spanning the same distance. 

 

(3) The span of the beam. Anyone who has ever tried to put up bookshelves at home will 

know that the shelves will sag to an unacceptable degree if not supported at regular intervals.  

(The same applies to the hanger rail inside a wardrobe. The rail will sag noticeably under the 

weight of all those clothes if it is not supported centrally as well as at its ends.) 

 

(4) The load to which the beam is subjected. The greater the load, the greater the bending. 

The bookshelves will sag to a greater extent under the weight of heavy encyclopedias than 

they would under the weight of a few light paperback books. 

 

If One carries on increasing the loading, the beam will eventually break. Clearly, the stronger 

the material, the more difficult it is to break. A timber ruler is quite easy to break by bending; 
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a steel ruler of similar dimensions might bend quite readily but it’s unlikely that one would 

manage to break it with your bare hands! 

 

This is evidently one way in which a beam can fail – through excessive bending. Beams must 

be designed so that they do not fail in this way. 

 

 
Figure 1.4 Bending in a beam. 

 

Shear 

 

 

 
Figure 1.5 Concept of shear 

Consider two steel plates that overlap each other slightly, with a bolt connecting the two 

plates through the overlapping part, as shown in Fig. 1.5 (a). Imagine now that a force is 

applied to the top plate, trying to pull it to the left. An equal force is applied to the bottom 

plate, trying to pull it to the right. Let’s now suppose that the leftward force is slowly 

increased, as is the rightward force. (Remember that the two forces must be equal if the 

whole system is to remain stationary.) If the bolt is not as strong as the plates, eventually we 

will reach a point when the bolt will break. After the bolt has broken, the top part of it will 

move off to the left with the top plate and the bottom part will move off to the right with the 

bottom plate. 
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Let’s examine in detail what happens to the failure surfaces (that is, the bottom face of the top 

part of the bolt and the top face of the bottom part of the bolt) immediately after failure. As 

you can see from the ‘exploded’ part of Fig. 1.5 (a), the two failure surfaces are sliding past 

each other. This is characteristic of a shear failure. 

 

We’ll now turn our attention to a timber joist supporting the first fl oor of a building, as 

shown in Fig. 1.5 (b). Let’s imagine that timber joists are supported on masonry walls and 

that the joists themselves support floorboards, as would be the case in a typical domestic 

dwelling – such as, perhaps, the house you live in. Suppose that the joists are inappropriately 

undersized – in other words, they are not strong enough for the loads they are likely to have 

to support. 

 

Now let’s examine what would happen if a heavy object – for example, some large piece of 

machinery – was placed on the floor near its supports, as shown in Fig. 1.5 (b). If the heavy 

object is near the supporting walls, the joists may not bend unduly. However, if the object is 

heavy enough and the joists are weak enough, the joist may simply break. This type of failure 

is analogous to the bolt failure discussed above. With reference to Fig. 1.5 (b), the right-hand 

part of the beam will move downwards (as it crashes to the ground), while the left-hand part 

of the beam will stay put – in other words, it moves upwards relative to the downward-

moving right-hand part of a beam. So, once again, we get a failure where the two failure 

surfaces are sliding past each other: a shear failure. So a shear failure can be thought of as a 

cutting or slicing action. So, this is a second way in which a beam can fail – through shear. 

Beams must be designed so that they do not fail in this way. (Incidentally, the half-headed 

arrow notation shown in Fig. 1.5 is the standard symbol used to denote shear.) 

 

1.10 Structural Elements and their behaviour 

 

Beams 

 

Beams may be simply-supported, continuous or cantilevered, as illustrated in Fig. 1.6. They 

are subjected to bending and shear under load, and the deformations under loading are shown 

by broken lines. 

 

A simply-supported beam rests on supports, usually located at each end of the beam. A 

continuous beam spans two or more spans in one unbroken unit; it may simply rest on its 

supports, but more usually it is gripped (or fixed) by columns above and below it. A 

cantilever beam is supported at one end only; to avoid collapse, the beam must be continuous 

over, or rigidly fixed at, this support. 

 

Beams may be of timber, steel or reinforced or prestressed concrete. 
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Figure 1.6 Beam types 

 

Slabs 

 

As with beams, slabs span horizontally between supports and may be simply supported, 

continuous or cantilevered. But unlike beams, which are usually narrow compared with their 

depth, slabs are usually wide and relatively shallow and are designed to form flooring – see 

Fig. 1.7. 

 

Slabs may be one-way spanning, which means they are supported by walls on opposite sides 

of the slab, or two-way spanning, which means that they are supported by walls on all four 

sides. This description assumes that a slab is rectangular in plan, as is normally the case. 

Slabs are usually of reinforced concrete and in buildings they are typically 150–300 

millimetres in depth. Larger than normal spans can be achieved by using ribbed or waffle 

slabs, as shown in Fig. 1.7 (c) and (d). Like beams, slabs experience bending. 

 

Columns 

 

Columns (or ‘pillars’ or ‘posts’) are vertical and support axial loads, thus they experience 

compression. If a column is slender or supports a nonsymmetrical arrangement of beams, it 

will also experience bending, as shown by the broken line in Fig. 1.8 (a). Concrete or 

masonry columns may be of square, rectangular, circular or cruciform cross-section, as 

illustrated in Fig. 1.8 (b). Steel columns may be H or hollow section. 
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Figure 1.7 Slab types 
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Figure 1.8 Column types 

 

Walls 

 

Like columns, walls are vertical and are primarily subjected to compression, but they may 

also experience bending. Walls are usually of masonry or reinforced concrete. As well as 

conventional flat-faced walls you might encounter fin or diaphragm walls, as shown in Fig. 

1.9. Retaining walls hold back earth or water and thus are designed to withstand bending 

caused by horizontal forces, as indicated by the broken line in Fig. 1.9 (c). 

 

 
Figure 1.9 Wall types 

 

Foundations 

 

As mentioned previously, everything designed by an architect or civil or structural engineer 

must stand on the ground – or at least have some contact with the ground. So foundations are 
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required, whose function is to transfer loads from the building safely into the ground. There 

are various types of foundation. A strip foundation provides a continuous support to load 

bearing external walls. A pad foundation provides a load-spreading support to a column. A 

raft foundation takes up the whole plan area under a building and is used in situations where 

the alternative would be a large number of strip and/or pad foundations in a relatively small 

space. Where the ground has low strength and/or the building is very heavy, piled 

foundations are used. 

 

 
Figure 1.10 Foundation types 

 

These are columns in the ground which transmit the building’s loads safely to a stronger 

stratum. All these foundation types are illustrated in Fig. 1.10. Foundations of all types are 

usually of concrete, but occasionally steel or timber may be used for piles. 

 

Arches 

 

The main virtue of an arch, from a structural engineering point of view, is that it is in 

compression throughout. This means that materials that are weak in tension – for example, 

masonry – may be used to span considerable distances. Arches transmit large horizontal 

thrusts into their supports, unless horizontal ties are used at the base of the arch. It is to cope 

with these horizontal thrusts that fl ying buttresses are provided in medieval cathedrals – see 

Fig. 1.11. 
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Figure 1.11 Arch types 

 

Trusses 

 

A truss is a two- or three-dimensional framework and is designed on the basis that each 

‘member’ or component of the framework is in either pure tension or pure compression and 

does not experience bending. Trusses are often used in pitched roof construction: timber 

tends to be used for domestic construction and steel caters for the larger roof spans required 

in industrial or commercial buildings. Lattice girders, which are used instead of solid deep 

beams for long spans, work on the same principle – see Fig. 1.12. 

 

 
Figure 1.12 Truss types 

 

Portal Frames 

 

A portal frame is a rigid framework comprising two columns supporting rafters. The rafters 

may be horizontal or, more usually, inclined to support a pitched roof. Portal frames are 

usually of steel but may be of precast concrete. They are usually used in large single-storey 

structures such as warehouses or out-of-town retail sheds – see Fig. 1.13. 
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Figure 1.13  Portal frame types 

 

Cable stayed and suspension structures 

 

Cable stayed structures are usually bridges but are sometimes used in building structures 

where exceptionally long spans are required. Instead of being supported from below by 

columns or walls, the span is supported from above at certain points by cables which pass 

over supporting vertical masts and horizontal outriggers to a point in the ground where they 

are firmly anchored. The cables are in tension and must be designed to sustain considerable 

tensile forces – see Fig. 1.14. 

 

 
Figure 1.14 cable stayed and suspension structures 

 

Cross section types 

 

There is an infi nite range of cross-sectional shapes available. Standard sections 

are illustrated in Fig. 3.16. 

• Beams and slabs in timber and concrete are usually rectangular in 

cross-section. 

• Concrete columns are usually of circular, square, rectangular or cruciform 

cross-section (see above). 
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Steel beams are usually of ‘I’ or hollow section. 

• Steel columns are usually of ‘H’ or hollow section. 

• Prestressed concrete beams are sometimes of ‘T’, ‘U’ or inverted ‘U’ 

section. 

• Members of steel trusses are sometimes of channel or angle sections. 

• Steel Z purlins (not illustrated) are often used to support steel roofi ng 

or cladding. 

 

 

 
Figure 1.15 Cross section types 
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Lecture 2 Introduction to statically determinate/ indeterminate structure with reference to 

2D and 3D structures. Free body diagram of structure. 

 

2.1 What is a Pin ? 

 

Let us imagine that you are inside a building and you will probably be in sight of a door. If 

it’s a conventional door (not a sliding one, for example), it will have hinges on it. What are 

the hinges for? Well, they make it possible for you to open the door by rotating it about the 

vertical axis on which the hinges are located. 

 

Figures 2.1 (a) and 2.1 (b) show the plan view of a door, in its shut and partially open 

positions respectively, along with part of the adjoining wall. You could approach this door 

and open it or shut it, partially or totally, at will. The hinges make it possible for you to do 

this by facilitating rotation. Had the door been rigidly fixed to the wall you would not have 

been able to open it at all. One other point to note: although you can open or shut the door at 

will, nothing you do to the door will affect the portion of the wall on the other side of the 

hinges. It remains unmoved. To put it another way, the hinges do not transmit rotational 

movements into the wall. This is a particularly important concept and is the basis of the 

analysis of pin jointed frames. 

 

 
Figure 2.1 A door viewed from above 

 

The word pin, as used in structural engineering, is analogous to the hinge in a door. A pin is 

indicated symbolically as a small unfilled circle. 

 

Consider two steel rods connected by a pin joint, as shown in Fig. 2.2. The two rods are 

initially in line as shown in Fig. 2.2 (a) and the left-hand rod is subsequently rotated about 30 

degrees anticlockwise, as shown in Fig. 2.2 (b). The right-hand rod is not affected by this 

rotational movement of the left-hand rod. 

 

A pin, then, has two important characteristics: 

(1) A pin permits rotational movement about itself. 

(2) A pin cannot transmit turning effects, or moments. 

 

 
Figure 2.2 Steel rods connected by a pin 
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2.2 Different types of supports 

 

Up till now we’ve been talking about supports (to beams, etc.) and indicating them as upward 

arrows without giving any thought to the type or nature of the support. As we shall see, there 

are three different types of support. 

 

2.2.1 Roller Supports 

 

Imagine a person on roller skates standing in the middle of a highly polished floor. If you 

were to approach this person and give him (or her) a sharp push from behind (not to be 

recommended without discussing it with them first!), they would move off in the direction 

you pushed them. Because they are on roller skates on a smooth fl oor, there would be 

minimal friction to resist the person’s slide across the floor. 

 

A roller support to part of a structure is analogous to that person on roller skates: a roller 

support is free to move horizontally. Roller supports are indicated using the symbol shown in 

Fig. 2.3 (a). You should recognise that this is purely symbolic and a real roller support will 

probably not resemble this symbol. In practice a roller support might comprise sliding rubber 

bearings, for example, or steel rollers sandwiched between steel plates, as shown in Fig. 2.3 

(b). 

 

 
Figure 2.3 Roller symbolically and in reality 

2.2.2 Pinned Support 

 

Consider the door hinge analogy discussed above. A pinned support permits rotation but 

cannot move horizontally or vertically – in exactly the same way as a door hinge provides 

rotation but cannot itself move from its position in any direction. 

 

2.2.3 Fixed Support 

 

Form your two hands into fists, place them about a foot apart horizontally and allow a friend 

to position a ruler on your two fists so that it is spanning between them. Your fists are safely 

supporting the ruler at each end. Now remove one of the supports by moving your fist out 

from underneath the ruler. What happens? The ruler drops to the floor. Why? You have 

removed one of the supports and the remaining single support is not capable of supporting 

the ruler on its own – see Figs 2.4 (a) and (b). 

 

However, if you grip the ruler between your thumb and remaining fingers at one end only, it 

can be held horizontally without collapsing. This is because the firm grip provided by your 

hand prevents the end of the ruler from rotating and thus falling to the floor – see Fig. 2.4 (c). 
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Figure 2.4 What is a fixed support ? 

 

In structures, the support equivalent to your gripping hand in the above example is called a 

fixed support. As with your hand gripping the ruler, a fixed support does not permit rotation. 

There are many situations in practice where it is necessary (or at least desirable) for a beam 

or slab to be supported at one end only – for example, a balcony. In these situations, the 

single end support must be a fixed support because, as we’ve seen, a fixed support does not 

permit rotation and hence does not lead to collapse of the structural member concerned – see 

Fig. 2.5. Like a pinned support, a fixed support cannot move in any direction from its 

position. Unlike a pinned support, a fixed support cannot rotate. So a fixed support is fixed in 

every respect. 

 

Now you’ve got a mental picture of each of the three different types of support (roller, pinned 

and fixed), let’s revisit each of them and take our study of them a stage further. We are going 

to do this in the context of reactions and moments. 

 

2.3 Restraints 

 

Let’s consider each of the following as being a restraint: 

(1) Vertical reaction 

(2) Horizontal reaction 

(3) Resisting moment. 

 

2.3.1 Restraints experienced by different types of support 
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2.3.1.1 Roller support 

 

Let’s return to our roller skater standing on a highly polished floor. As the floor is supporting 

him, it must be providing an upward reaction to counteract the weight of the skater’s body. 

However, we’ve already seen that if we push our skater, he will move. The rollers on the 

skates, and the frictionless nature of the floor, mean that the skater can offer no resistance to 

our push. In other words, the skater can provide no horizontal reaction to our pushing (in 

contrast to a solid wall, for example, which would not move if leaned on and therefore would 

provide a horizontal reaction). 

 

There is also nothing to stop the skater from falling over (i.e. rotating). We can see from the 

above that a roller support provides one restraint only: vertical reaction. (There is no 

horizontal reaction and no moment.) 

 
Figure 2.5 Fixed support symbolically and in reality 

 

2.3.1.2 Pinned support 

 

As discussed above, a pinned support permits rotation (so there is no resistance to moment), 

but as it cannot move horizontally or vertically there must be both horizontal and vertical 

reactions present. So, a pinned support provides two restraints: vertical reaction and 

horizontal reaction. (There is no moment.) 

 

2.3.1.3 Fixed Support 

 

We saw above that a fixed support is fixed in every respect: it cannot move either 

horizontally or vertically and it cannot rotate. This means there will be both horizontal and 

vertical reactions and, if it cannot rotate, there must be a moment associated with the fixed 

support. Incidentally, this moment is called a fixed end moment. So, a fixed support provides 

three restraints: vertical reaction, horizontal reaction and moment. 

 
Figure 2.6 Restraints provided by various support types. 
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To summarise: 

• A roller support provides one restraint: vertical reaction. 

• A pinned support provides two restraints: vertical reaction and horizontal reaction. 

• A fixed support provides three restraints: vertical reaction, horizontal reaction and moment. 

 

This is illustrated in Fig. 2.6. 

 

2.4 Solution of Equilibrium Equations 

 

We know from our knowledge of mathematics about the following: 

• If we have the same number of unknowns as we have equations, a mathematical problem 

can be solved. 

• But if we have more unknowns than equations, a mathematical problem cannot be solved. 

 

Relating this to structural analysis, if we look back to the procedure we used for calculating 

reactions, we’ll see that we were solving three equations. These equations were represented 

by: 

 

(1) Vertical equilibrium (total force up = total force down) 

(2) Horizontal equilibrium (total force right = total force left) 

(3) Moment equilibrium (total clockwise moment = total anticlockwise moment). 

 

 

2.5 Statically Determinate vs Statically indeterminate 

 

As we have three equations, we can use them to solve a problem with up to three unknowns 

in it. In this context, an unknown is represented by a restraint, as defined earlier. (Remember, 

a roller support has one restraint, a pinned support has two restraints and a fixed support 

has three restraints.)  Once these reactions are evaluated, we could determine the internal 

stress resultants (reactions, axial forces, moments etc. ) in the structure. Correct solution for 

reaction and internal stresses must satisfy the equations of static equilibrium for the entire 

structure. They must also satisfy equilibrium equations for any part of the structure as a free 

body. A sketch depicting the free body with the associated forces and internal stresses is 

called a free body diagram (FBD). Hence a structural system with up to three restraints is 

solvable – such a system is said to be statically determinate (SD) – while a structural system 

with more than three restraints is not solvable (unless we use advanced structural techniques) 

– such a system is said to be statically indeterminate (SI). 

 

So if we inspect a simple structure, examine its support and thence count up the number of 

restraints, we can determine whether the structure is statically determinate (up to three 

restraints in total) or statically indeterminate (more than three restraints). 

 

Let’s look at the three examples shown in Fig. 2.7. 

 

Example 1 

This beam has a pinned support (two restraints) at its left-hand end and a roller support (one 

restraint) at its right-hand end. So the total number of restraints is (2 + 1) = 3, therefore the 

problem is solvable and is statically determinate (SD). 
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Example 2 

This pin-jointed frame has a pinned support (two restraints) at each end. So the total number 

of restraints is (2 + 2) = 4. As 4 is greater than 3, the problem is not solvable and is statically 

indeterminate (SI). 

 

Example 3 

This beam has a fixed support (three restraints) at its left-hand end and a roller support (one 

restraint) at its right-hand end. So the total number of restraints is (3 + 1) = 4, therefore, 

again, the problem is not solvable and is statically indeterminate (SI). 

 

 

 
 

Figure 2.7 Statical determinancy 

 

Sample Problems 

Problem 1: 

Determine whether each of the structures given in Fig. 2.8 is statically determinate (SD) or 

statically indeterminate (SI). 

 

 
Figure 2.8 Statical determinancy Sample problems 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    31 

 

Lecture 3 Introduction to statically determinate/ indeterminate structure with reference to 

2D and 3D structures. Free body diagram of structure. 

 

 

3.1 Stability 

 

It is essential for a structure to be strong enough to be able to carry the loads and moments to 

which it will be subjected. But strength is not sufficient: the structure must also be stable. 

 

3.2 Stability of structural frameworks 

 

Many buildings and other structures have a structural frame. Steel buildings comprise a 

framework, or skeleton, of steel. We are going to consider the build-up of a framework from 

scratch. Our framework will consist of metal rods (‘members’) joined together at their ends 

by pins. (The concept of a pin, which is a type of connection that facilitates rotation) 

Consider two members connected by a pin joint, as shown in Fig. 3.1 (a). Is this a stable 

structure? (In other words, is it possible for the two members to move relative to each other?) 

As the pin allows the two members to move relative to one another, this is clearly not a stable 

structure. 

 

 

 
Figure 3.1 Building up a framework 

 

Now, let’s add a third member to obtain three members connected by pin joints to form a 

triangle, as shown in Fig. 3.1 (b). Is this a stable structure? Yes, it is because even though the 

joints are pinned, movement of the three members relative to each other is not possible. So 

this is a stable, rigid structure. In fact, the triangle is the most basic stable structure, as we 

will mention again in the following discussion. If we add a fourth member we produce the 
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frame shown in Fig. 3.1 (c). Is this a stable structure? No it is not. Even though the triangle 

within it is stable, the ‘spur’ member is free to rotate relative to the triangle, so overall this is 

not a stable structure. Consider the frame shown in Fig. 3.1 (d), which is achieved by adding 

a fifth member to the previous frame. This is a stable structure. If you are unsure of this, try 

to determine which individual member(s) within the frame can move relative to the rest of the 

frame. You should see that none of them can and therefore this is a stable structure. This is 

why you often see this detail in structural frames as ‘diagonal bracing’, which helps to ensure 

the overall stability of a structure. 

 

Let’s add yet another member to obtain the frame shown in Fig. 3.1 (e). Is this a stable 

structure? No, it is not. In a similar manner to the frame depicted in Fig. 3.1 (c), it has a spur 

member which is free to rotate relative to the rest of the structure. Adding a further member 

we can obtain the frame shown in Fig. 3.1 (f) and we will see that this is a rigid, or stable, 

structure. 

 

We could carry on ad infinitum in this vein, but I think you can see that a certain pattern is 

emerging. The most basic stable structure is a triangle (Fig. 3.1 (b)). We can add two 

members to a triangle to obtain a ‘new’ triangle. All of the frames that comprise a series of 

triangles (Figs 3.1 (d) and (f)) are stable; the remaining ones, which have spur members, are 

not. 

 

Let’s now see whether we can devise a means of predicting mathematically whether a given 

frame is stable or not. In Table 3.1 each of the six frames considered in Fig. 3.1 is assessed. 

The letter m represents the number of members in the frame and j represents the number of 

joints (note that unconnected free ends of members are also considered as joints). The column 

headed ‘Stable structure?’ merely records whether the frame is stable (‘Yes’) or not (‘No’). 

 

 
 

It can be shown that if m = 2j – 3 then the structure is stable. If that equation does not hold, 

then the structure is not stable. This is borne out by Table 3.1: compare the entries in the 

column headed ‘Stable structure?’ with those in the column headed ‘Is m = 2j – 3?’. 

 

3.2 Internal stability of a framed structure-a summary 

 

(1) A framework which contains exactly the correct number of members required to keep it 

stable is termed a perfect frame. In these cases, m= 2j – 3, where m is the number of 

members in the frame and j is the number of joints (including free ends). Frames (b), (d) and 

(f) in Fig.3.1 are examples. 
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(2) A framework having less than the required number of members is unstable and is termed 

a mechanism. In these cases, m < 2j – 3. Frames (a), (c) and (e) in Fig. 3.1 are examples. In 

each case, one member of the frame is free to move relative to the others. 

 

(3) A framework having more than this required number is ‘over-stable’ and contains 

redundant members that could (in theory at least) be removed. Examples follow. In these 

cases, m > 2j – 3. These frames are statically indeterminate (SI) which  means that the frames 

cannot be mathematically analysed without resorting to advanced structural techniques. 

 

Examples 

 

For each of the frames shown in Fig. 3.2, use the equation m = 2j – 3 to determine whether 

the frame is (a) a perfect frame (SD), (b) a mechanism (Mech) or (c) statically indeterminate 

(SI). Where the frame is a mechanism, indicate the manner in which the frame could deform. 

Where the frame is statically indeterminate, consider which members could be re- 

 

 
 

 

 
Figure 3.2 Are these frames stable ? 

 

moved without affecting the stability of the structure. The answers are given in Table 3.2. 

The frames shown in Figs 3.2 (b), (c) and (g) are statically indeterminate. This means they 

are over-stable and that one or more members may be removed without compromising 
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stability. In the case of Fig. 3.2 (b), any one member can be removed from the top part of the 

frame and the structure would still be stable. In Fig. 3.2 (c), two members could be removed 

without compromising stability – but the two members to be removed should be chosen with 

care. A sensible choice would be to remove one diagonal member from each of the two 

squares. In Fig. 3.2 (g), any one member could be removed. The frames shown in Figs 3.2 

(d), (e) and (h) are mechanisms. This means that a part of the frame is able to move relative 

to another part of the frame. In Fig. 3.2 (d), the upper triangle is free to rotate about the 

frame’s central pin independently of the lower part of the frame. In Fig. 3.2 (e), the square 

part of the frame is free to deform, or collapse, as we shall see in a later example. The mode 

of deformation of the frame in Fig. 3.2(h) is less easy to visualise. It is shown in Fig. 3.3. 

 

 
 

 
Figure 3.3 Deformation of frame shown in Figure 3.2 (h) 

 

3.3 General cases 

 

Look at frames (a) and (b) in Fig. 3.4. If we apply the m = 2j – 3 formula to the standard 

square depicted in Fig. 3.4 (a), we will find that it is unstable, or a mechanism. It can deform 

in the manner indicated by the broken lines in Fig. 3.4 (a). This is why, in ‘real’ structures, 

diagonal cross-bracing must often be provided to ensure stability. 
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If we look at the frame shown in Fig. 3.4 (b), we see that it is a square which is diagonally 

cross-braced twice. Applying the m = 2j – 3 formula we find that it is statically indeterminate, 

which means that it contains at least one redundant member. On further investigation we find 

that we can remove any one of the six members without affecting the stability of the 

structure. 

 

 
Figure 3.4 Frame stability general cases 

 

Consider the frame shown in Fig. 3.4(c). It contains nine members and six joints, so m = 9 

and j = 6 and it can thus readily be shown that m = 2j – 3 in this case, which suggests that the 

framework is a perfect frame. In fact, an inspection of the frame shows that this is not, in fact, 

the case. The left hand part of the frame is an un-braced square, which is a mechanism and 

can deform in the same manner as the frame shown in Fig. 3.4 (a). But the right-hand part of 

the frame has double diagonal cross-bracing, which suggests that it is ‘over-stable’ and 

contains redundant members in the same way as the frame shown in Fig. 3.4 (b). So, part of 

the frame shown in Fig. 3.4 (c) is a mechanism and the other part is statically indeterminate, 

but this does not make an overall perfect frame, as predicted by the formula! The lesson to be 

learned from this is that the formula m = 2j – 3 should be regarded as a guide only – it doesn’t 

always work. A given frame should always be inspected to see whether there are any signs of 

either (a) mechanism or (b) over-stability. 

 

3.4 Frames on Supports 

 

Up till now we have conveniently ignored the fact that, in practice, frames have to be 

supported. We therefore need to consider the effects of supports on the overall stability of 

frames. we knew about the three different types of support (roller, pinned and fixed). We also 

saw that: 

• a roller support provides one restraint (r = 1); 

• a pinned support provides two restraints (r = 2); 

• a fixed support provides three restraints (r = 3). 
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The m = 2j – 3 used above is now modified to m + r = 2j where supports are present. As 

before, m is the number of members and j is the number of joints. The letter r represents the 

total number of restraints (one for each roller support, two for each pinned support and three 

for each fixed support). 

 

(1). If m + r = 2j, then the frame is a perfect frame and is statically determinate (SD), which 

means it can be analysed by various methods. 

 

(2) If m + r < 2j, then the frame is a mechanism – it is unstable and should not be used as a 

structure. 

 

(3) If m + r > 2j, then the frame contains redundant members and is statically indeterminate 

(SI), which means it cannot be analysed without resorting to advanced methods of structural 

analysis. 

 

 
Figure 3.5 Are these structures stable ? 

 

Examples 

 

For each of the frames shown in Fig. 3.5, use the equation m + r = 2j to determine whether 

the frame is (a) statically determinate, (b) a mechanism or (c) statically indeterminate. Where 
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the frame is a mechanism, indicate the manner in which the frame could deform. Where the 

frame is statically determinate, consider which members could be removed without affecting 

the stability of the structure. The answers are given in Table 3.3. 

 

 
 

The frames shown in Figs 3.5 (b) and (f) are statically indeterminate. This means they are 

over-stable and that one or more members may be removed. In the case of Fig. 3.5 (b), one of 

the diagonal members may be removed (but not both of them!) and the structure would still 

be stable. In Fig. 3.5 (f), the ‘lean-to’ diagonal member may be removed without 

compromising stability. The frames shown in Figs 3.5 (c) and (d) are mechanisms. The 

structure in Fig. 3.5 (c) is obviously unstable, being free to rotate about its single central 

support. In Fig. 3.5 (d), the square part of the frame is free to deform in the manner indicated 

in Fig. 3.4 (a). 

 

3.5 Stability of real structures 

 

In practice, the stability of a structure is assured in one of three ways: 

 

(1) Shear walls/stiff core. 

(2) Cross-bracing. 

(3) Rigid joints. 

 

Let’s look at each of these in more detail. 

 

3.5.1 Shear walls/stiff core 

 

This form of stability is usually (but not exclusively) used in concrete buildings. Consider the 

structural plan of an upper floor of a typical concrete office building, as shown in Fig. 3.6 (a). 

The structure comprises a grid layout of columns, which support beams and slabs at each 

floor level. The wind blows horizontally against the building from any direction. It is 

obviously important that the building doesn’t collapse in the manner of a ‘house of cards’ 

under the effects of this horizontal wind force. We could design each individual column to 

resist the wind forces, but for various reasons this is not the way it is normally done. 

 

Instead, shear walls are used. These walls are designed to be stiff and strong enough to resist 

all the lateral forces on the building. Since most buildings have staircases and many have lift 

shafts, the walls that surround the staircases and lift shafts are often designed and constructed 

to perform this role, as shown in Fig. 3.6 (b). On larger buildings, the shear walls may be 
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constructed in such a way as to comprise an inner core to the building, which often contains 

stairwells, lift shafts, toilets and ducts for services.  

 

 
Figure 3.6 Provision of stability using shear walls 

 

3.5.2 Cross bracing 

 

This form of stability is common in steel-framed buildings. Figure 3.7 (a) shows the elevation 

of a three-storey steel-framed building, on which the wind is blowing. There is nothing to 

stop the building tilting over and collapsing in the manner indicated by the broken lines in 

Fig. 3.7 (a). 

 

One way of ensuring stability is to stop the ‘squares’ in the building elevation from becoming 

trapeziums. Earlier in this chapter we saw that (a) a triangle is the most basic stable structure 

and (b) a diagonal member can stop a square from deforming (illustrated in Figs 3.1 (b) and 

(d) respectively). So diagonal cross-bracing is used to ensure stability, as shown in Fig. 3.7 

(b). 

 

3.5.3 Rigid Joints 

 

A third method of providing lateral stability is simply to make the joints strong and stiff 

enough that movement of the beams relative to the columns is not possible. The black blobs 

in Fig. 3.8 indicate stiff joints that stop the action depicted in Fig. 3.7 (a) from happening. 
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Figure 3.7 Provision of stability using cross bracing 

 

 
Figure 3.8 Provision of stability using rigid frames 

 

3.6 Space Frames 

 

Normally the centre lines of bars, forces applied and support reactions in the case of plane 

trusses lie in a plane. When all these lie in different planes i.e in three dimensional space, 

such a structure is called a space truss or space frame which is nothing but an assemblage of 

bars in three dimensional space. Tetrahedron is the simplest space frame consisting of six 

members. Antenna towers, transmission line towers, guyed masts, derricks, offshore 

structures etc are some of the common examples of space frames. We can construct a space 

frame from the basic tetrahedron by adding three new members and a joint. To get a stable 
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space frame, we have to arrange adequate number of bars in a suitable manner starting with a 

basic tetrahedron. There are six bars and four joints in the basic tetrahedron. For each joint 

added, we have now three additional members. Therefore, we can have a reaction between 

the member of bars (b) and the number of joints (j) as given below 

b-6=3(j-4) 

b=3j-6                                                                                                                                   

The above expression gives the minimum number of bars required to construct a stable space 

truss or space frame. If the number of bars in the space truss is less than that required by the 

above expression, then we consider the space frame as unstable. In Contrast,  if the number of 

bars is more than the minimum number required then the space frame is considered internally 

indeterminate. 

 

Sample Problems 

 

Problem 1: 

 

(1) For each of the examples shown in Fig. 3.9, determine whether the frame is (a) a perfect 

frame (SD), (b) unstable (a mechanism) or (c) over-stable (containing redundant members). If 

the framework is unstable, state where a member could be added to make it stable. If the 

frame is over-stable, determine which members could be removed and the structure would 

still be stable. 

 

(2) Select a framed structure near where you live. Determine how lateral stability is provided 

to the structure and state the reasons why the designer may have chosen that particular 

method of ensuring stability. 

 

 
Figure 3.9 Sample problems 
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Lecture 4 Introduction to kinematically determinate/indeterminate structures with 

reference to 2D and 3D structures. Degree of freedom. 

 

4.1 Degrees of Freedom 

 

The degrees of freedom (DOF) can be defined as asset of independent displacements that 

specify completely the deformed position and orientation of the body or system under 

loading. Hence, displacements include deflections and rotations as well. A rigid body that 

moves in 3D space in linear directions has three translational displacement components as 

DOFs. The rigid body can also undergo angular motion, which is called rotation. So the body 

has three rotational DOFs. Altogether a rigid body can have at least six DOFs, three 

translations and three rotations. Translation refers to the ability of a body to move without 

rotating whereas rotation refers to its angular motion about some axis. When a structure is 

loaded, the joints also called nodes will undergo unknown displacements. These 

displacements are referred to as the DOF for the structures. 

 

4.2 Kinematics 

 

We have discussed in the previous sections that loads applied on structural systems in turn 

induce internal forces in the system. As a consequence of this the system undergoes 

deformation which generically is called as motion. The study relating to forces and motions 

constitutes an applied science which is a branch of mechanics. The cardinal principle 

underlying this body is the equilibrium. It is a condition which describes a state of balance of 

a system when forces applied on it. As the structural system is initially at rest and in 

equilibrium too under a system of forces acting in it, we call that part of mechanics concerned 

with relations between these forces as statics. There is another part of mechanics called 

dynamics which refers to the other part of mechanics dealing with rigid bodies of motion. 

Dynamics is divided into two parts, namely, kinematics and kinetics. Kinematics is the study 

of the geometry of motion. It is used to relate displacement, velocity, acceleration and time 

without any reference to the forces causing the motion. Kinetics  is the study of the relation 

existing between the forces acting on a body, the mass of the body and the motion of the 

body. It is used to predict the motion caused by the given forces or to determine the forces 

required to produce a given motion.  

 

In structural analysis, kinematics refers to quantities associated with geometry, the position 

changes or the deformation of the geometry. This term is used in opposition to the term 

statics.  

 

 Displacement refers to a translation or a rotation of a specific point in a structure. For 

example, we consider a simple beam as shown in Figure 4.1. 

 

 
Figure 4.1 Displacement of simple beam 
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It is free to undergo displacement in the form of translation in the direction perpendicular to 

its own axis as shown in Figure 4.1. which is called deflection as well as rotate at its supports. 

The quantity δ is the vertical translation of the beam and is called deflection of the beam. The 

rotation at support A is Aθ  and at support B is Bθ . These rotations are called slopes.  

 

A joint in a truss can translate in two mutually perpendicular directions as shown in Figure 

4.2. The joint C can displace along x and y directions only. The joint cannot rotate.  

 

 
Figure 4.2 Displacement in a truss 

 

A rigid frame can undergo translation and rotation at joints as shown in Figure 4.3. The joint 

B in Figure 4.3 undergoes horizontal translation B∆  and a rotation Bθ . 

 

 
Figure 4.3 Displacement in a frame 

 

These translations and rotations constitute the degrees of freedom of a structural system. In 

structural analysis, these displacements other than that at the supports are in general not 

known. Therefore, the objective of the analysis is to determine their values. The number of 

the independent joint displacement in a structure is called the degree of kinematic 

indeterminancy or the number of degrees of freedom. This number is a sum of the degree of 

freedom in rotation and translation. For example, in a two span beam as shown in Figure 44, 

the degree of kinematic indeterminancy is 2 since the structure can undergo rotations at joints 

B and C and these are indeterminates. Rotation D1 at joint B and rotation D2 at joint C are 
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the two unknowns. Because support A is fixed, the rotation D3 is zero which is a known 

quantity and hence determinate.   

 

 

 
Figure 4.4 : Degree of kinematic indeterminancy 
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Lecture 5 B.M. and S.F. diagrams for different loading on simply supported beam, 

cantilever and overhanging beams. 

 

5.1. Introduction 

 

Beams are usually straight horizontal members used primarily to carry vertical loads. Quite 

often they are classified according to the way they are supported, as indicated in Fig. 5.1. In 

particular, when the cross section varies the beam is referred to as tapered or hunched. Beam 

cross sections may also be “built up” by adding plates to their top and bottom. 

 

 
Figure 5.1 Types of beams 

 

Beams are primarily designed to resist bending moment; however, if they are short and carry 

large loads, the internal shear force may become quite large and this force may govern their 

design. When the material used for a beam is a metal such as steel or aluminium, the cross 

section is most efficient when it is shaped as shown in Fig. 5.2. Here the forces developed in 

the top and bottom flanges of the beam form the necessary couple used to resist the applied 

moment M, whereas the web is effective in resisting the applied shear V. This cross section is 

commonly referred to as a “wide flange,” and it is normally formed as a single unit in a 

rolling mill in lengths up to 23 m. If shorter lengths are needed, a cross section having 

tapered flanges is sometimes selected. When the beam is required to have a very large span 

and the loads applied are rather large, the cross section may take the form of a plate girder. 

This member is fabricated by using a large plate for the web and welding or bolting plates to 

its ends for flanges. The girder is often transported to the field in segments, and the segments 

are designed to be spliced or joined together at points where the girder carries a small internal 

moment.  

 

Concrete beams generally have rectangular cross sections, since it is easy to construct this 

form directly in the field. Because concrete is rather weak in resisting tension, steel 

“reinforcing rods” are cast into the beam within regions of the cross section subjected to 

tension. Precast concrete beams or girders are fabricated at a shop or yard in the same manner 

and then transported to the job site. Beams made from timber may be sawn from a solid piece 

of wood or laminated. Laminated beams are constructed from solid sections of wood, which 

are fastened together using high-strength glues. 
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Figure 5.2 Cross section of a beam 

5.2 Loads 

 

Once the dimensional requirements for a structure have been defined, it becomes necessary to 

determine the loads the structure must support. Often, it is the anticipation of the various 

loads that will be imposed on the structure that provides the basic type of structure that will 

be chosen for design. For example, high-rise structures must endure large lateral loadings 

caused by wind, and so shear walls and tubular frame systems are selected, whereas buildings 

located in areas prone to earthquakes must be designed having ductile frames and 

connections. 

 

Once the structural form has been determined, the actual design begins with those elements 

that are subjected to the primary loads the structure is intended to carry, and proceeds in 

sequence to the various supporting members until the foundation is reached. Thus, a building 

floor slab would be designed first, followed by the supporting beams, columns, and last, the 

foundation footings. In order to design a structure, it is therefore necessary to first specify the 

loads that act on it. 

 

Since a structure is generally subjected to several types of loads, a brief discussion of these 

loadings will now be presented to illustrate how one must consider their effects in practice. 

 

5.2.1 Dead load 

 

Dead loads consist of the weights of the various structural members and the weights of any 

objects that are permanently attached to the structure. Hence, for a building, the dead loads 

include the weights of the columns, beams, and girders, the floor slab, roofing, walls, 

windows, plumbing, electrical fixtures, and other miscellaneous attachments. 

 

In some cases, a structural dead load can be estimated satisfactorily from simple formulas 

based on the weights and sizes of similar structures. Through experience one can also derive 

a “feeling” for the magnitude of these loadings. 

 

 

For example, the average weight for timber buildings is 1.9-2.4 KN/m
2
 for steel framed 

buildings it is 2.9-3.6 KN/m
2
 and for reinforced concrete buildings it is 5.3-6.2 KN/m

2
  

Ordinarily, though, once the materials and sizes of the various components of the structure 

are determined, their weights can be found from tables that list their densities. 
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Although calculation of dead loads based on the use of tabulated data is rather 

straightforward, it should be realized that in many respects these loads will have to be 

estimated in the initial phase of design. These estimates include non-structural materials such 

as prefabricated facade panels, electrical and plumbing systems, etc. Furthermore, even if the 

material is specified, the unit weights of elements reported in codes may vary from those 

given by manufacturers, and later use of the building may include some changes in dead 

loading. As a result, estimates of dead loadings can be in error by 15% to 20% or more. 

 

Normally, the dead load is not large compared to the design load for simple structures such as 

a beam or a single-story frame; however, for multi-story buildings it is important to have an 

accurate accounting of all the dead loads in order to properly design the columns, especially 

for the lower floors. 

 

5.2.2 Live loads 

 

Live Loads can vary both in their magnitude and location. They may be caused by the 

weights of objects temporarily placed on a structure, moving vehicles, or natural forces. The 

minimum live loads specified in codes are determined from studying the history of their 

effects on existing structures. Usually, these loads include additional protection against 

excessive deflection or sudden overload. 

 

5.2.3 Building Loads 

 

The floors of buildings are assumed to be subjected to uniform live loads, which depend on 

the purpose for which the building is designed. These loadings are generally tabulated in 

local, state, or national codes.  The values are determined from a history of loading various 

buildings. They include some protection against the possibility of overload due to emergency 

situations, construction loads, and serviceability requirements due to vibration. In addition to 

uniform loads, some codes specify minimum concentrated live loads, caused by hand carts, 

automobiles, etc., which must also be applied anywhere to the floor system. For example, 

both uniform and concentrated live loads must be considered in the design of an automobile 

parking deck. 

 

For some types of buildings having very large floor areas, many codes will allow a reduction 

in the uniform live load for a floor, since it is unlikely that the prescribed live load will occur 

simultaneously throughout the entire structure at any one time. 

 

5.2.4 Highway Bridge loads 

 

The primary live loads on bridge spans are those due to traffic, and the heaviest vehicle 

loading encountered is that caused by a series of trucks. 

 

5.2.5 Impact Loads 

 

Moving vehicles may bounce or sidesway as they move over a bridge, and therefore they 

impart an impact to the deck.The percentage increase of the live loads due to impact is called 

the impact factor, I.This factor is generally obtained from formulas developed from 

experimental evidence. 
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5.2.6 Wind loads 

 

When structures block the flow of wind, the wind’s kinetic energy is converted into potential 

energy of pressure, which causes a wind loading. The effect of wind on a structure depends 

upon the density and velocity of the air, the angle of incidence of the wind, the shape and 

stiffness of the structure, and the roughness of its surface. For design purposes, wind loadings 

can be treated using either a static or a dynamic approach. 

 

5.2.7 Snow loads 

In some parts of the country, roof loading due to snow can be quite severe, and therefore 

protection against possible failure is of primary concern. Design loadings typically depend on 

the building’s general shape and roof geometry, wind exposure, location, its importance, and 

whether or not it is heated. 

5.2.8 Earthquake loads 

Earthquakes produce loadings on a structure through its interaction with the ground and its 

response characteristics. These loadings result from the structure’s distortion caused by the 

ground’s motion and the lateral resistance of the structure. Their magnitude depends on the 

amount and type of ground accelerations and the mass and stiffness of the structure. 

 

5.2.9 Hydrostatic and Soil Pressure 

 

When structures are used to retain water, soil, or granular materials, the pressure developed 

by these loadings becomes an important criterion for their design. Examples of such types of 

structures include tanks, dams, ships, bulkheads, and retaining walls. Here the laws of 

hydrostatics and soil mechanics are applied to define the intensity of the loadings on the 

structure. 

 

5.3 Support Conditions 

 

Structural members are joined together in various ways depending on the intent of the 

designer. The three types of joints most often specified are the pin connection, the roller 

support, and the fixed joint. A pin-connected joint and a roller support allow some freedom 

for slight rotation, whereas a fixed joint allows no relative rotation between the connected 

members and is consequently more expensive to fabricate. Examples of these joints, 

fashioned in metal and concrete, are shown in Figs. 5.3 and 5.4, respectively. For most timber 

structures, the members are assumed to be pin connected, since bolting or nailing them will 

not sufficiently restrain them from rotating with respect to each other. 

 

Idealized models used in structural analysis that represent pinned and fixed supports and pin-

connected and fixed-connected joints are shown in Figs. 5.5a and 5.5b. In reality, however, 

all connections exhibit some stiffness toward joint rotations, owing to friction and material 

behavior. In this case a more appropriate model for a support or joint might be that shown in 

Fig. 5.5c. If the torsional spring constant the joint is a pin, and if k : q, the joint is fixed. 
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Figure 5.3 Typical pin and fixed supported connections 

 

Figure 5.4 typical roller and fixed supported connections 

 

Figure 5.5 Various support conditions 

When selecting a particular model for each support or joint, the engineer must be aware of 

how the assumptions will affect the actual performance of the member and whether the 

assumptions are reasonable for the structural design. For example, consider the beam shown 

in Fig. 5.6a, which is used to support a concentrated load P. The angle connection at support 

A is like that in Fig. 5.2a and can therefore be idealized as a typical pin support. Furthermore, 

the support at B provides an approximate point of smooth contact and so it can be idealized 

as a roller. The beam’s thickness can be neglected since it is small in comparison to the 

beam’s length, and therefore the idealized model of the beam is as shown in Fig. 5.6b.The 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    49 

 

analysis of the loadings in this beam should give results that closely approximate the loadings 

in the actual beam. 

 

 
Figure 5.6 Actual and idealised beams 

 

5.4 Calculation of Reactions 

 

We found out earlier that if a body or object of any sort is stationary, then the forces on it 

balance, as follows: 

 

Total force upwards = Total force downwards 

Total force to the left = Total force to the right 

 

Next we will find out how to use this information to calculate reactions – that is, the upward 

forces that occur at beam supports in response to the forces on the beam. 

 

Moment Equilibrium 

 

we found that if an object or body is stationary, it doesn’t rotate and the total clockwise 

moment about any point on the object is equal to the total anticlockwise moment about the 

same point. This is the third rule of equilibrium. The three rules of equilibrium are expressed 

in Fig. 5.7 

 

The three rules of equilibrium can be used to calculate reactions.  A reaction is a force 

(usually upwards) that occurs at a support of a beam or similar structural element. A reaction 

counteracts the (usually downward) forces in the structure to maintain equilibrium. It is 

important to be able to calculate these reactions. If the support is a column, for example, the 

reaction represents the force in the column, which we would need to know in order to design 

the column. 

 

Consider the example shown in Fig. 5.8. The thick horizontal line represents a beam of span 

6 metres which is simply supported at its two ends, A and B. The only load on the beam is a 

point load of 18 kN, which acts vertically downwards at a position 4 metres from point A. 

We are going to calculate the reactions RA and RB (that is, the support reactions at points A 

and B respectively). 
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Figure 5.7 The rules of equilibrium. 

 

 

 
Figure 5.8 Calculation of reactions for point loads. 

 

From vertical equilibrium,  we know that: 

 

Total force upwards = Total force downwards 

 

Applying this to the example shown in Fig. 5.8, we can see that: RA + RB = 18 kN 

 

Of course, this doesn’t tell us the value of RA and it doesn’t tell us the value of RB. It merely 

tells us that the sum of RA and RB is 18 kN. To evaluate RA and RB then, we clearly have to 

do something different. 

 

Let’s use our new-found knowledge of moment equilibrium. We found out above that if any 

structure is stationary, then at any given point in the structure: 

 

Total clockwise moment = Total anticlockwise moment 

 

The above applies at any point in a structure. So, taking moments about point A: 

 

(18 kN × 4 m) = (RB × 6 m) 
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Therefore RB = 12 kN. Note that there is no moment due to force RA. This is because force 

RA passes straight through the point (A) about which we are taking moments. 

 

Similarly, taking moments about point B: 

 

Total clockwise moment = Total anticlockwise moment 

 

(RA × 6 m) = (18 kN × 2 m) 

 

Therefore RA = 6 kN. 

\ 

As a check, let’s add RA and RB together: 

 

RA + RB = 6 + 12 = 18 kN 

 

which is what we would expect from the first equation above. 

 

Calculation of reactions when uniformly distributed loads (UDLs) are present 

 

In practice, most loads in ‘real’ buildings and other structures are uniformly distributed loads 

– or can be represented as such – so we need to know how to calculate end reactions for such 

cases. The main problem we encounter is in taking moments. For point loads it is 

straightforward – the appropriate moment is calculated by multiplying the load (in kN) by the 

distance from it to the point about which we’re taking moments. However, with a uniformly 

distributed load, how do we establish the appropriate distance? 

 

Figure 5.9  represents a portion of uniformly distributed load of length x. The intensity of the 

uniformly distributed load is w kN/m. The chain-dotted line in Fig. 5.9 represents the centre 

line of the uniformly distributed load. Let’s suppose we want to calculate the moment of this 

piece of UDL about a point A, which is located a distance a from the centre line of the UDL. 

In this situation, the moment of the UDL about A is the total load multiplied by the distance 

from the centre line of the UDL to the point about which we’re taking moments. The total 

UDL is w × x, the distance concerned is x, so: 

 

moment of UDL about A = wax. 

 

Apply this principle whenever you’re working with uniformly distributed loads. 

 

Calculate the end reactions for the beam shown in Fig. 5.10. Use the same procedure as 

before. 

 

Vertical equilibrium: 

 

RA + RB = (3 kN/m × 2 m) = 6 kN 

 

Taking moments about A: 
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(3 kN/m × 2 m) × 1 m = RB × 4 m 

 

Therefore: 

 

RB = 1.5 kN 

 

Taking moments about B: 

 

(3 kN/m × 2 m) × 3 m = RA × 4 m 

 

Therefore: 

 

RA = 4.5 kN 

 

Check: 

 

RA + RB = 4.5 + 1.5 = 6 kN 

 

(as expected from the first equation). 

 

 
Figure 5.9 Bending moment calculation for uniformly distributed load (UDL): general case. 

 

 
Figure 5.10 Calculation of reactions for uniformly distributed loads. 
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Sample problems 

 

Calculate the reactions for the problems shown in Figure 5.11. 

 

 
Figure 5.11 Reactions: for sample problems 
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Lecture 6 B.M. and S.F. diagrams for different loading on simply supported beam, 

cantilever and overhanging beams 

 

6.1.. Deformations in Structures 

 

Imagine that the beams indicated by the thick solid horizontal lines in Fig. 6.1 are quite 

flexible but not particularly strong, so will readily deform under the loads shown. The lines in 

Fig. 6.2 indicate the deformed (or deflected) forms of the corresponding beams in Fig. 6.1. 

 

 

 

 
Figure 6.1 Typical beams 

 

Hogging and sagging 

 

Let us discuss the deformations shown in Fig. 6.2, but before we do so let’s define two 

important terms. You have probably already encountered the term sagging – for example, you 

may have a bed that sags, or dips, in the middle (in which case, my advice is: get a better bed 

– it’s well worth the investment). Sagging, or downward deformation, is illustrated in Fig. 6.3 

(a). Hogging – an upward deformation – is the opposite (or mirror image) of sagging. The 

concept of hogging is illustrated in Fig. 6.3 (b). 
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Figure 6.2 Deformations in beams 

 

Consider, as an example, beam number 1 in Fig. 6.1, which is simply supported at either end 

and is subjected to a central point load. Clearly, the beam will tend to sag under that load, as 

indicated by the line in the corresponding diagram in Fig. 6.2. When the beam has sagged, the 

fibres in the very top of the beam will be squashed together; in other words, they will be 

compressed. Similarly, the fibres in the bottom part of the beam will have stretched, which 

indicates that the bottom of the beam is in tension. 

 

The fact that the bottom of the beam is in tension is indicated by the letter T (for tension) 

placed underneath the line in beam number 1 in Fig. 6.2. Beam number 2 in Fig. 6.1 will tend 

to hog (or ‘break its back’) over the central support as a result of the point loads at either end. 

This hogging profile is indicated by the line in the corresponding diagram in Fig. 6.2. In this 

case, we will see that the top of the beam will be in tension and therefore we’ve indicated 
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tension (letter T) above the line at the support position. We can analyse the remaining beams 

in Fig. 6.1 in a similar fashion and obtain the deformed profiles and tension positions for each 

one (indicated by the lines and letter T respectively in Fig. 6.2). 

 

 
Figure 6.3 Hogging and sagging. 

 

If you have difficulty visualising the deformation of the beam shown in beam number 4, 

replicate the situation by holding a standard-length ruler horizontal by gripping it firmly with 

your left hand at its left-hand end and applying an anticlockwise twist with your right hand at 

the right-hand end. You will then see the ruler deform in the manner depicted for beam 

number 4 in Fig. 6.2 and tension will occur on the underside. When examining the deformed 

shapes of the beams indicated in Fig. 6.2 for beams 6 and 7, remember that a fixed support 

firmly grips a beam, while a pinned (or simple) support permits rotation to take place.  

 

6.2.. Shear and Bending 

 

(1) Shear is a cutting or slicing action which causes a beam to simply break or snap. A heavy 

load located near the support of a weak beam might cause a shear failure to occur. 

 

(2) If a beam is subjected to a load it will bend. The more load that is applied, the more the 

beam will bend. The more the beam bends, the greater will be the tensile and compressive 

stresses induced in the beam. Eventually, these stresses will increase beyond the stresses the 

material can bear and failure will occur – in other words the beam will break. In short, if you 

increase the bending in a beam, eventually it will break. 

 

So, a beam can fail in shear or it can fail in bending. A natural question at this stage is: which 

will occur first? Unfortunately, there is no general answer to that question. In some 

circumstances, a beam will fail in shear; in other cases, a beam will fail in bending. Which 

happens first depends on the longitudinal profile of the beam: its spans, the position and 

nature of its supports and the positions and magnitudes of the loading on it. Only by 

calculation can we tell whether a shear or a bending failure will occur first. The first thing we 
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need to do is develop a system of quantifying shear and bending effects. These 

quantifications are called shear force and bending moment respectively and are defined in the 

following paragraphs. 

 

Shear Force 

 

A shear force is the force tending to produce a shear failure at a given point in a beam. The 

value of shear force at any point in a beam = the algebraic sum of all upward and downward 

forces to the left of the point. (The term ‘algebraic sum’ means that upward forces are 

regarded as being positive and downward forces are considered to be negative.) 

 

Consider the example shown in Fig. 6.4, in which the end reactions have already been 

calculated as 25 kN and 15 kN as shown. To calculate the shear force at point A, ignore 

everything to the right of A and examine all the forces that exist to the left of A. Remember, 

upward forces are positive and downward forces are negative. 

 

Adding the forces together: 

 

Shear force at A = + 25 – 30 – 10 = –15 kN 

 

 
Figure 6.4 Shear force and bending moment at a point 

Bending moment 

 

The bending moment is the magnitude of the bending effect at any point in a beam. We knew 

that a moment is a force multiplied by a perpendicular distance, it’s either clockwise or 

anticlockwise and is measured in kN.m or N.mm. The value of bending moment at any point 

on a beam = the sum of all bending moments to the left of the point. (Regard clockwise 

moments as being positive and anticlockwise moments as being negative.) 

 

Consider – again – the beam shown in Fig. 6.4. To calculate the bending moment at point A, 

ignore everything to the right of A and examine the forces (and hence moments) that exist to 
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the left of A. You should realise that, as we are calculating the moment at A, all distances 

should be measured from point A to the position of the relevant force. See Fig. 6.5 for 

clarification. 

 

Bending moment at A = (25 kN × 4 m) – (30 kN × 2 m) – (10 kN × 1 m) = 100 – 60 – 10 = 

30 kN.m 

 

 
 

Fig. 6.5 Bending moment at point A. 

 

Figure 6.6 shows a more generalised case. Beam AB supports two point loads, M and N, 

located at the positions shown. The end reactions at A and B are RA and RB respectively. 

Suppose we are interested in finding the shear force at position X, which is located a distance 

x1 from the support A, x2 from point load M and x3 from point load N. The shear force and 

bending moment at X are calculated as follows: 

 

Shear force at X = RA – M – N 

 

Bending moment at X = (RA × x1) – (M × x2) – (N × x3) 

 

(Remember: clockwise moments are positive, anticlockwise moments are negative.) 

 

 
Fig. 6.6 Shear forces and bending moments: general case. 
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Sample problems 

 

Calculate the shear force and bending moments for the cases shown in Figure 6.7  

 

 
Figure 6.7 Shear forces and bending moments at a point: sample problems 
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Lecture 7 B.M. and S.F. diagrams for different loading on simply supported beam, 

cantilever and overhanging beams 

 

Up till now we’ve discussed how to calculate values of shear force and bending moment at a 

specific point in a beam. As architects, we’re not interested so much in the values at a 

specific point as in how shear force and bending moment vary along the entire length of a 

beam. Accordingly, we can calculate and draw graphical representations of shear force and 

bending moment and their variation along a beam. These are called shear force and bending 

moment diagrams. 

 

Problem: 1 

Draw the shear and moment diagrams for a simply supported beam of span 6m carrying a 

concentrated load of 200 KN at its centre 

 

Solution: 

 

 
Figure 7.1  SFD and BMD of simple beam 
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The simple beam is shown in Fig. 7.1(a). 

 

The load is symmetrical and hence the reactions are equal. RA = RB = 100 kN. We consider 

a section XX at a distance x from left support A as shown in Fig. 7.1(a). The shear force (SF) 

at this section is Vx = 100 kN by considering forces acting on the left of the section. 

 

The shear force is positive and is independent of x. Therefore it remains constant as x 

increases up to the point C. 

 

We consider a section X1X1 at a distance x1 from the right support B. The shear force at 

this section is Vx = - 100 kN by considering forces acting on the right of the section. 

 

The shear force is negative and remains constant till the section reaches the point C. The final 

shear force diagram (SFD) is shown in Fig. 7.1(b). 

 

The bending moment (BM) at section XX is 

 

Mx = 100 x = 100x 

 

The BM is positive and depends on x. As x increases the BM increases and reaches a 

maximum value at C.  

 

Therefore MC = 100 x  3 = 300 kNm. 

 

The BM at section X1X1 is MX1 = 100 x1 

 

The BM is positive and increases with x1. It reaches a maximum value at C. The final BM 

diagram (BMD) is shown in Fig. 7.1(c). 

 

Problem 2:  

Draw the shear and moment diagrams for a simply supported beam of span 6m carrying UDL 

of 45 KN/m  

 

Solution: 

 

The beam with loading is shown in Fig. 7.2(a). The UDL on the beam is symmetrical. The 

support reactions are (45x6/2) = 135 kN. We consider a section XX at a distance x from the 

left support A. The SF at this section XX is 

 

Vx = 135 – 45x 

 

The SF is dependent on x and it varies linearly. At support where x = 0, VA = 135 kN. At 

mid-span where x = 3 m, SF VC = 135 – 45x3 = 0. We now consider a section XX from right 

support B. The SF is 

 

Vx = - 135 + 45x 

 

When x = 0, VB = - 135 + 45x0 = - 135 kN. When x = 3 m, VC = - 135 + 45x3 = 0. 
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The SFD is shown in Fig. 7.2(b). The BM on the left section is 

 

Mx = 135x – (45x2/2) 

 

At x = 0, MA = 0. At mid-span where x = 3 m, MC = 135x3 – (45x32/2) = 202.5 kNm. 

 

The BM is maximum at mid-span. If we take a section from the right support the BM 

expression is the same. The BM at right support is zero and maximum at mid-span. The 

BMD is shown in Fig. 7.2(c). It is symmetrical about mid-span and also positive throughout. 

 
 

 
 

Figure 7.2 SFD and BMD of beam with udl 
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Figure 7.3 Beam carrying udl half of the span 

 

Problem 3:  

Sketch the shear and moment diagrams of a simply supported beam of 6 m. The load on the 

beam consists of UDL of 15 KN/m over the left half of the span 

 

Solution; 

 

The beam with loading is shown in Fig. 7.3(a). The total load on the beam is 45 kN. It acts at 

its CG of 1.5 m from left support A. Now the reaction RA = (454.5/6) = 33.75 kN. The 

reaction RB = (451.5/6) = 11.25 kN. At a section XX distance x from A, SF is 

 

Vx = 33.75 – 15x 

 

At x = 0, VA = 33.75 kN; at x = 3 m, VC = 33.75 – 153 = -11.25 kN At a section from B, SF 

is 

 

Vx = -11.25 kN 
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The SF remains constant up to point C. The SFD is shown in Fig. 7.3(b). The SF is zero when 

33.75 – 15x = 0, i.e., x = 2.25 m from A. The BM at section XX from A is 

 

Mx = 33.75x – 15 (x2/2) 

 

At x = 0, MA = 0; The BM is maximum where SF is zero. Therefore 

 

Mmax = 33.752.25 – 15(2.252/2) = 37.37 kNm 

 

The BMD is shown in Fig. 7.3(c). 

 

 
Figure 7.4 SFD and BMD of a beam carrying couple 

 

Problem 4 A simply supported beam carries a moment of 250 KNm at its centre. If the span 

of the beam is 4.5 m, draw the shear and moment diagrams of the beam. 

 

Solution: 

 

The beam with the couple is shown in Fig. 7.4(a). 

We assume the applied moment 250 kNm act clockwise as shown in Fig. 7.4(a). From 

Statics (RA = - (250/4.5) = - 55.56 kN and RB = (250/4.5) = 55.56 kN. The SFD is 

shown in Fig. 7.4(b). 
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The SF is negative throughout the span and is a rectangle. From Fig. 3.29(g) the moment 

at C in the segment AC is 

 

MC = - (55.56  2.25) = - 125 kNm. The BM is negative. 

 

Similarly, the moment at C in the segment BC is 

MC = (55.56  2.25) = - 125 kNm. The BM is positive. 

 

The BMD is shown in Fig. 7.4 (c). 
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Lecture 8 B.M. and S.F. diagrams for different loading on simply supported beam, cantilever 

and overhanging beams: Numerical Problems 

 

 

Problem 5 A cantilever beam of span 5 m carried a concentrated load of 50 KN at 2.5 m from 

the fixed end. Draw the shear and bending moment diagrams. 

 

Solution: 

 

The cantilever beam with load is shown in Fig. 8.1(a). 

The reaction RA = 50 kN. The moment at fixed end MA = - 502.5 = -125 kNm. The SF 

at a section from A between A and C is 

Vx = 50 kN. This is positive and constant throughout. 

The SFD is shown in Fig. 8.1(b). 

The BM at a section between A and C is 

Mx = - 125 + 50x 

At x = 0, MA = -125 kNm and at x = 2.5 m, MC = -125 + 502.5 = 0 

The BMD is shown in Fig. 8.1(c). 

 

 
Figure 8.1 SFD and BMD of a cantilever beam 
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Problem 6: Draw the shear and moment diagrams for a cantilever beam of span 5 m carrying 

UDL of 15 KN/m for the entire span. 

 

Solution: 

 

The cantilever beam with UDL is shown in Fig. 8.2(a). 

From Fig. 3.30(c), RA = 155 = 75 kN. The SFD is shown in Fig. 8.2(b). 

It is positive throughout. From Fig. 8.2(c), the BM at fixed end is – (1552/2) = - 187.5 

kNm. The BMD is shown in Fig. 8.2(c) and it is negative all along the span. 

 
Figure 8.2 SFD and BMD of a cantilever for UDL 

 

Problem 7: The span of a cantilever beam is 5.5 m. It carries UDL of 25 KN/m over a 

distance of 3m from the free end. Sketch the shear and moment diagrams of the beam. 

 

Solution: 
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Figure 8.3 SFD and BMD of a cantilever 

 

Problem 8: A beam of span 6m has a overhang of 1.5 m on its right. It carries a central 

concentrated load of 150 KN on the 6 m span and UDL of 5 KN/m on its overhang. Draw the 

shear and moment diagrams of the over-hanging beam. 

 

Solution: 

 

The overhanging beam is shown in Fig. 8.4(a). 

Taking moment of forces about A 

RBx6 = 150x3 + 5x1.5x6.75; RB = 83.44 kN 

RA = 150 + 5x1.5 – 83.44; RA = 74.06 kN 

The SF between A and C is 

 

Vx = 74.06 kN. It is positive and constant 

 

The SF between C and B is 

 

Vx = 74.06 – 150 = - 75.94 kN. It is negative and constant 

 

The SF between B and D 
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Figure 8.4 SFD and BMD of overhang beam 

 

Vx = 74.06 – 150 + 83.44 – 5(x – 6) 

 

At x = 6 m, VB = 74.06 – 150 + 83.44 – 5(6 -6) = 7.5 kN 

 

At x = 7.5 m, VD = 74.06 – 150 + 83.44 – 5(7.5 - 6) = 0 

 

The SFD is shown in Fig. 8.4(b). 

 

The BM between A and C 

 

Mx = 74.06x 
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When x = 0, MA = 0; x = 3 m, MC = 74.063 = 222.18 kNm 

 

The BM at B 

 

MB = - 5x1.5x0.75 = - 5.625 kNm 

The BMD is shown in Fig. 8.4(c). 

 

Use of MATLAB in Structural Analysis 

 

The procedure for obtaining the shear and moment diagrams is described through the solution 

of a sample beam and loading condition shown in Figure 8.5. Prior to developing the 

MATLAB script file for this problem, the following preliminary task involving the 

determination of the algebraic expressions for the shear and moment needs to be performed. 

 

 

 
Figure 8.5 Free body diagram of the beam 

 

Writing the force and moment equilibrium equations for the free body diagrams of the two 

sections of the beam shown at the bottom of Figure 8.5, the following expressions for the 

shear force V and bending moment M can be established for each of the beam segments AB 

and BC. 

Lx ≤≤ 10  

L
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V
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Now that the theoretical formulation of the problem is complete, a MATLAB script file can 

be created. The script file can be developed in a form which prompts the user to input the 

values for the parameters w, E, I, L, and a. Then, a MATLAB loop can be employed to 

compute the values for the shear and moment along the length of the beam for a series of 

values of x, measured from the left support at A, starting from x = 0 and ending at x = L. 

Note that it is necessary to include a conditional statement within the loop, so that the proper 

expressions for the determination of unknowns is selected and used in the computations. The 

MATLAB script file for the given beam is provided in Figure 8.6, along with the generated 

plots in Figure 8.7. These plots are for the case when w = 0.2 kip/ft, E = 29000 ksi, I = 100 

in4, L = 20 ft, and a = 10 ft. Using the powerful MATLAB plotting commands and tools, the 

users can control and create the plots in any format they desire. 

 

MATLAB SCRIPT TO PLOT SHEAR FORCE AND BENDING MOMENTS 

 
w=0.2; 
E=29000; 
I=100; 
L=20; 
a=10; 
w=w/12;L=L*12;a=a*12; 
fprintf(' x(in.) Shear(kip) Moment(kip.in)\n') 
% 

___________________________________________________________________________

_________________ 
% Computing the shear, moment 
x=linspace(0,L+a,(L+a)/6+1); 
for k=1:1:(L+a)/6+1 
if x(k)<=L 
x1(k)=x(k); 
V(k)=-w*a^2/(2*L); 
M(k)=-w*a^2*x1(k)/(2*L); 
fprintf('%4.0f %12.3f %14.3f\n',x(k),V(k),M(k)) 
else 
x2(k)=x(k)-L; 
V(k)=w*(a-x2(k)); 
M(k)=-w*(a-x2(k))^2/2; 
fprintf('%4.0f %12.3f %14.3f\n',x(k),V(k),M(k)) 
end 
end 
% 

___________________________________________________________________________

_________________ 
% plotting the shear, moment 
subplot(2,1,1),plot(x,V),title('Shear'),xlabel('x (in)'),ylabel('Shear 

Force (kip)'),... 
axis([0 360 -1 3]),set(gca,'XTick',[0:60:L+a]),text(60,0,'V_1 =-

wa^2/(2L)'),... 
text(250,2.2,'V_2 =w(a-x_2)') 

  
subplot(2,1,2),plot(x,M),title('Moment'),xlabel('x (in)'),ylabel('Moment 

(kip.in)'),... 
axis([0 360 -150 50]),set(gca,'XTick',[0:60:L+a]),text(30,-90,'M_1 =-

wa^2x_1/(2L)'),... 
text(210,20,'M_2 =-w(a-x_2)^2/2') 

Figure 8.6 MATLAB Script for BM and SF 
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Figure 8.7 Shear force and bending moment diagram of a overhanging beam 
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Lecture 9 B.M. shear and normal thrust of three hinged arches: Theory 

 

9.1 Introduction 

 

Arches also offer a potential synthesis of architectural and structural form. At Ludwig Erhard 

House, Berlin (Fig. 9.1) repeated arches structure a vault-like building form. Varying arch 

spans respond to an irregularly shaped site. Suspended floors either hang from tension 

hangers under the arches, or as on the street frontage, are propped off them. This is an 

example of reasonably conventional arch usage where arches are regularly spaced and 

aligned vertically. But at the Great Glasshouse, Carmarthenshire, arches form a toroidal dome 

(Fig. 9.2). The dome’s two constant orthogonal radii of curvature require that the arches 

distant from the building’s centreline lean over in response to the three-dimensional surface 

curvature. Clarity of the arched structural form is undiminished by the small diameter tubes 

that run longitudinally to tie the arches back at regular intervals to a perimeter ring beam. 

Apart from supporting the roof glazing they also prevent the arches from buckling laterally 

and deflecting from their inclined planes. 

 

 
Figure 9.1 Ludwig Erhard House, Berlin, Germany, Nicholas Grimshaw & Partners, 1998. 

Arched end of building as seen from the rear. 

 

 
 

Figure 9.2 The Great Glasshouse, Carmarthenshire, Wales, Foster and Partners, 1998. 

Arched roof. 
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9.2 Three Hinged Arches 

 

The three-hinged arch has hinged supports at each abutment that provide four external 

restraints. The introduction of another hinge in the arch member provides a moment release. 

The extra hinge provides an additional equation of equilibrium that, together with the three 

basic equations of equilibrium, makes the solution of the arch possible. Typical examples of 

three-hinged arches are shown in Figure 9.3. 

 

. 

 

Figure 9.3 Three hinged arches 

 

For a three-hinged arch subjected to vertical loads only, the horizontal support reactions at 

the arch springings are equal and opposite and act inward. The vertical support reactions at 

the arch springings are equal to those of a simply supported beam of identical length with 

identical loads. 

 

For the symmetrical three-hinged arch shown in Figure 9.4 with a vertical applied load W, the 

unknown horizontal thrust at the springings is H, and the unknown vertical reactions are V1 

and V 2. The vertical reaction at support 2 is obtained by considering moment equilibrium 

about support 1. Hence: 

 

01=M  

 

021 =−= WalVM  

lWaV /2 =  

( )laWVWV /121 −=−=  

These values for 1V  and 2V  are identical to the reactions of a simply supported beam of the 

same span as the arch with the same applied load W. 

 

The horizontal thrust at the springing is determined from a free body diagram of the right half 

of the arch as shown at (ii). Considering moment equilibrium about the crown hinge at 3; 

02/23 =−= HclVM  
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clVH 2/2=  

 
Figure 9.4 Three hinged arch 

 

This value for H is identical to the bending moment at the center of a simply supported beam 

of the same length with the same applied load W multiplied by 1/c. 

 

The bending moment in the arch at any point a distance x from the left support is given by the 

expressions: 

 

aforxHyxVM x ≤−= L1  

lxforaHyxlVM x ≤−−= pL)(2  

Where y is the height of the arch at a distance x from the left support. 

 

At x=l/2, y=c, and the bending moment at the crown hinge is: 

02/ =lM  

 

The expressions for bending moment may be considered as the superposition of the bending 

moment of a simply supported beam of the same span with the same applied load W plus the 

bending moment due to the horizontal thrust H . The bending moment due to the applied load 

on a simply supported beam is shown at (iii) and the bending moment due to the horizontal 

thrust is shown at (iv); this is identical to the shape of the arch. Since the bending moment is 

zero at the crown hinge, the combined bending moment for the arch is obtained by adjusting 

the scale of the free bending moment to give an ordinate of magnitude c at x= l/2 and 

superimposing this on a drawing of the arch. This is shown at (v), drawn on the compression 

side of the arch. In the case of a three hinged parabolic arch with a uniformly distributed 

applied load, no bending moment is produced in the arch rib. 
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Lecture 10 B.M. shear and normal thrust of three hinged arches: Numerical Examples 

 

Problem 1: A parabolic arch has span 60 m and rise 5 m carries a concentrated load of 10 KN 

at a distance of 45 m from the left abutment. Find the reactions at the supports and the 

resultant moment at the load. 

 

Solution: 

 
Figure 10.1  Three hinged arch under single concentrated load 

 

The arch is parabolic. We assume it is a three-hinged arch. 

KNVA 5.2
60

1510
=

×
=    KNVB 5.7

60

4510
=

×
=  

KNH 15
52

1510
=

×
×

=  

The BM at the load as a simple beam is 

KNmM o 5.112
60

154510
=

××
=  

We assume the equation of the arch with the origin at the crown and x axis directed to the 

right and y axis directed downwards is 

2

24

L

hx
y =  

The height of the arch axis at the load above the springing line is (h –y). 

 

For x=15m 

 

my 25.1
60

1554
2

2

=
××

=  

( ) myh 75.325.15 =−=−∴  

 

Moment due to thrust is ( ) KNmyhH 25.5675.315 =×=−  

 

The resultant moment at the load is ( ) KNm25.5625.565.112 =−  
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Problem 2:  A three hinged parabolic arch is as shown below. Determine the vertical and 

horizontal reactions at supports A and B. 

 

Solution: 

 

 

Figure 10.2 Three hinged arch 

 

 

 

 

 

 

 

 

 

 

 

The inclined load of 10 kN is situated at a distance of 4 m from C horizontally and 7 m 

vertically above B. We can resolve this load into horizontal and vertical components. 

 

The vertical component is 

 

KNVW 6
5

103
=

×
=  

The  horizontal component is 

 

KNHW 8
5

104
=

×
=  

Taking moment of forces about A 

 

288626712 ×−×+×=×−× BB HR  

KNHR BB 44712 =×−×                                                                                                          (1) 

 

Taking moment of forces about C 

 

184688 ×+×=×−× BB HR  

4=− BB HR                                                                                                                             (2) 

 

From  Equation (2), BB HR += 4                                                                                            (3) 

Substituting Eq (3) into Eq(1) and solving KNH B 8.0−=                                                      (4) 

Substituting Eq. (4) into Eq(2). And solving  KNRB 8.8=                                                     (5) 

From 0=∑ VF   66 +=+ BA RR  

Substituting for BR  from Eq. (5) and solving we get KNRA 8.8=  

From 0=∑ HF   8=+ BA HH  
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Substituting for BH  from Eq. (4) and solving we get KNH A 2.7=  

 

Sample Problems 

 

Problem 1: A parabolic arch hinged at the springing and crown has a span of 20 m. The 

central rise of the arch is 4m. It is loaded with a uniformly distributed load of intensity 

2KN/m on the left 8 m length. Calculate a) the direction and magnitude of reaction at the 

hinges and b) the bending moment, normal thrust and shear at 4m and 15 m from the left end. 

and c) maximum positive and negative bending moments. 

 

Problem 2: A symmetrical parabolic arch with a central hinge, of rise r and span L is 

supported at its ends on pins at the same level. What is the value of the horizontal thrust when 

a load W which is uniformly distributed horizontally covers the whole span ?  
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Lecture 11 Deflection of statically determinate beams: Double Integration method, 

 

11.1.. Introduction 

 

Deflections of structures can occur from various sources, such as loads, temperature, 

fabrication errors, or settlement. In design, deflections must be limited in order to provide 

integrity and stability of roofs, and prevent cracking of attached brittle materials such as 

concrete, plaster or glass. Furthermore, a structure must not vibrate or deflect severely in 

order to “appear” safe for its occupants. More important, though, deflections at specified 

points in a structure must be determined if one is to analyze statically indeterminate 

structures. 

 

Under linear elastic condition, a structure subjected to a load will return to its original un-

deformed position after the load is removed. The deflection of a structure is caused by its 

internal loadings such as normal force, shear force, or bending moment. For beams and 

frames, however, the greatest deflections are most often caused by internal bending, whereas 

internal axial forces cause the deflections of a truss. Before the slope or displacement of a 

point on a beam or frame is determined, it is often helpful to sketch the deflected shape of the 

structure when it is loaded in order to partially check the results. This deflection diagram 

represents the elastic curve or locus of points which defines the displaced position of the 

centroid of the cross section along the members. For most problems the elastic curve can be 

sketched without much difficulty.When doing so, however, it is necessary to know the 

restrictions as to slope or displacement that often occur at a support or a connection. Supports 

that resist a force, such as a pin, restrict displacement; and those that resist moment, such as a 

fixed wall, restrict rotation. Note also that deflection of frame members that are fixed 

connected causes the joint to rotate the connected members by the same amount . On the 

other hand, if a pin connection is used at the joint, the members will each have a different 

slope or rotation at the pin, since the pin cannot support a moment. 

If the elastic curve seems difficult to establish, it is suggested that the moment diagram for 

the beam or frame be drawn first. By the sign convention for moments, a positive moment 

tends to bend a beam or horizontal member concave upward,  Likewise, a negative moment 

tends to bend the beam or member concave downward. Therefore, if the shape of the moment 

diagram is known, it will be easy to construct the elastic curve and vice versa. For example, 

consider the beam in Fig. 11.1 with its associated moment diagram. Due to the pin-and-roller 

support, the displacement at A and D must be zero. Within the region of negative moment, 

the elastic curve is concave downward; and within the region of positive moment, the elastic 

curve is concave upward. In particular, there must be an inflection point at the point where 

the curve changes from concave down to concave up, since this is a point of zero moment.  
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Figure 11.1  BMD and elastic curve of a simply supported beam under varying loading 

conditions 

  

 

11.2 Elastic Beam Theory 

 

Let us discuss the most common case of an initially straight beam that is elastically deformed 

by loads applied perpendicular to the beam’s x axis and lying in the x-v plane of symmetry 

for the beam’s cross-sectional area, Fig. 11.2a. Due to the loading, the deformation of the 

beam is caused by both the internal shear force and bending moment. If the beam has a length 

that is much greater than its depth, the greatest deformation will be caused by bending, and 

therefore we will direct our attention to its effects.  

 

When the internal moment M deforms the element of the beam, each cross section remains 

plane and the angle between them becomes θd , Fig. 11.2b. The arc dx that represents a 

portion of the elastic curve intersects the neutral axis for each cross section.The radius of 

curvature for this arc is defined as the distance , which is measured from the center of 

curvature O’ to dx. Any arc on the element other than dx is subjected to a normal strain. For 

example, the strain in arc ds, located at a position y from the neutral axis, is 
ds

dsds −
=

'

ε . 

However, θρddxds == and θρ dyds )(' −=  ,and so 
( )

θρ
θρθρ

ε
d

ddy −−
=  or 

y

ε
ρ

−
=

1
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Figure 11.2 Simple beam bending 

 

If the material is homogeneous and behaves in a linear elastic manner, then Hooke’s law 

applies, E/σε =  Also, since the flexure formula applies, IMy /−=σ  Combining these 

equations and substituting into the above equation, we have 

 

EI

M
=

ρ
1

                                                                                                                               (11.1) 

 

Here 

 

ρ = the radius of curvature at a specific point on the elastic curve ρ/1  ( is referred to as the 

curvature) 

 

M= the internal moment in the beam at the point where ρ  is to be determined 

 

E= the material’s modulus of elasticity 

 

I = the beam’s moment of inertia computed about the neutral axis 
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The product EI in this equation is referred to as the flexural rigidity, and it is always a 

positive quantity. Since θρddx =  then from Eq. 11.1, 

 

dx
EI

M
d =θ                                                                                                                          (11.2) 

 

If we choose the axis positive upward, Fig. 11–2a, and if we can express the curvature ρ/1 in 

terms of x and , we can then determine the elastic curve for the beam. In most calculus books 

it is shown that this curvature relationship is 

( )[ ] 2/32

22

/1

/
/1

dxdv

dxvd

+
=ρ  

Therefore 

 

( )[ ] 2/32

22

/1

/

dxdv

dxvd

EI

M

+
=                                                                                                          (11.3) 

 

This equation represents a nonlinear second-order differential equation. Its solution ( )xfv = , 

gives the exact shape of the elastic curve assuming of course that beam deflections occur only 

due to bending. In order to facilitate the solution of a greater number of problems, Eq. 11–3 

will be modified by making an important simplification. Since the slope of the elastic curve 

for most structures is very small, we will use small deflection theory and assume 0/ ≈dxdv   

Consequently its square will be negligible compared to unity and therefore Eq. 11–3 reduces 

to 

 

EI

M

dx

vd
=

2

2

                                                                                                                           (11.4) 

 

Once M is expressed as a function of position x, then successive integrations of Eq. 11–4 will 

yield the beam’s slope,  ( )dxEIMdxdv ∫==≈ //tanθθ  (Eq. 11–2), and the equation of the 

elastic curve, ( ) ( )dxEIMxfv ∫∫== /  respectively. For each integration it is necessary to 

introduce a “constant of integration” and then solve for the constants to obtain a unique 

solution for a particular problem. If the loading on a beam is discontinuous—that is, it 

consists of a series of several distributed and concentrated loads—then several functions must 

be written for the internal moment, each valid within the region between the discontinuities. 

For example, consider the beam shown in Fig. 11–3. The internal moment in regions AB, BC, 

and CD must be written in terms of the and coordinates. Once these functions are integrated 

through the application of Eq. 11–4 and the constants of integration determined, the functions 

will give the slope and deflection (elastic curve) for each region of the beam for which they 

are valid. 
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Figure 11.3 Beam with general loading 

 

Sign Convention 

 

When applying Eq. 11–4, it is important to use the proper sign for M as established by the 

sign convention that was used in the derivation of this equation, Fig. 11–4a. Furthermore, 

recall that positive deflection, v , is upward, and as a result, the positive slope angle θ  will be 

measured counter-clockwise from the x axis. The reason for this is shown in Fig. 11.4b. Here, 

positive increases dx and dv in x and v create an increase θd  that is counter-clockwise. Also, 

since the slope angle θ  will be very small, its value in radians can be determined directly 

from dxdv /tan =≈ θθ  

 

 

 
Figure 11.4 Beam with notations 
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Boundary continuity conditions 

 

The constants of integration are determined by evaluating the functions for slope or 

displacement at a particular point on the beam where the value of the function is known. 

These values are called boundary conditions. For example, if the beam is supported by a 

roller or pin, then it is required that the displacement be zero at these points. Also, at a fixed 

support the slope and displacement are both zero. If a single x coordinate cannot be used to 

express the equation for the beam’s slope or the elastic curve, then continuity conditions must 

be used to evaluate some of the integration constants. Consider the beam in Fig. 11–5. Here 

the x1 and x2  coordinates are valid only within the regions AB and BC, respectively. Once 

the functions for the slope and deflection are obtained, they must give the same values for the 

slope and deflection at point B x1+x2 = a   , so that the elastic curve is physically continuous. 

Expressed mathematically, this requires  ( )θθθ 21 )( =a  and v1 (a)=v2 (a).  These equations 

can be used to determine two constants of integration. 

 

 
Figure 11.5 

 

 

Example 1: The cantilevered beam shown in Fig. 11–6a is subjected to a couple moment 

Moat its end. Determine the equation of the elastic curve. EI is constant. 

 

Solution: 

 

 

Figure 11.6 

 

 

Elastic Curve. The load tends to deflect the beam as shown in Fig. 11.6a. By inspection, the 

internal moment can be represented throughout the beam using a single x coordinate. 
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Moment Function. From the free-body diagram, with M acting in the positive direction, Fig. 

11–6b, we have M=Mo 

Slope and Elastic Curve 

Applying Eq (11.4), and integrating twice yields 

oM
dx

vd
EI =

2

2

                                                                                                                           (1) 

1CxM
dx

dv
EI o +=                                                                                                                     (2) 

21

2

2
CxC

xM
EIv o ++=                                                                                                           (3) 

Using the boundary conditions 0/ =dxdv  at x=0 and v=0 at x=0 , then C1=C2 = 0. 

Substituting these results in Eqs (2) and (3) with dxdv /=θ , we get 

 

EI

xM o=θ  

 

EI

xM
v o

2

2

=  

 

Maximum slope and displacement occur at A x=L, for which 

 

EI

LM o=θ                                                                                                                                  (4) 

 

EI

LM
v o

2

2

=                                                                                                                                 (5) 

 

The positive result for slope indicates counter-clockwise rotation and the positive result for 

deflection indicates that is upward. This agrees with the results sketched in Fig. 11.6a. 

 

USE OF MATLAB FOR SLOPE AND DEFLECTION 

 

The procedure for obtaining the slope and deflection is described through the solution of a 

sample beam and loading condition shown in Figure 11.7. Prior to developing the MATLAB 

script file for this problem, the following preliminary task involving the determination of the 

algebraic expressions for the slope and deflection needs to be performed. 

 

Writing the force and moment equilibrium equations for the free body diagrams of the two 

sections of the beam shown at the bottom of Figure 11.7, the following expressions for the 

shear force V and bending moment M can be established for each of the beam segments AB 

and BC. 

Lx ≤≤ 10  
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L

wa
V

2

2

1

−
=    1

2

1
2

x
L

wa
M

−
=  

 

ax ≤≤ 20  

( )21 xawV −=    
( )

2

2

2
2

xaw
M

−−
=  

 

 
Figure 11.7 Free body diagram of the beam 

 

Upon substituting for the moments M1 and M2 in the differential equations of the two regions 

of the beam shown below: 

 

Lx ≤≤ 10  

1

"

1 MEIv =     

 

ax ≤≤ 20  

2

"

2 MEIv =     

the following two differential equations are obtained for the beam. 

 

Lx ≤≤ 10  

1

2
"

1
2

x
L

wa
EIv

−
=     

 

ax ≤≤ 20  

( )
2

2

2"

2

xaw
EIv

−−
=     
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In these expressions E, and I are respectively the modulus of elasticity and the moment of 

inertia of the beam. All other parameters are as defined in Figure 11.7. Upon utilizing the 

method of successive integration and applying the boundary conditions: 

( ) 0011 ==xv   ( ) 0022 ==xv  

stating that the deflection of the beam at the supports A and B are zero, and the continuity 

equations: 

( ) ( )02

'

21

'

1 === xvLxv     ( ) ( )02211 === xvLxv  

stating that there should only be a single value for the slope and a single value for the 

deflection at point B, the following expressions are obtained for the slope v’ and deflections v 

for the two beam segments AB and BC. 

 

Lx ≤≤ 10  

( )2

1

2
2

'

1 3
12

xL
EIL

wa
v −=  

( )2

1

21

2

1
12

xL
EIL

xwa
v −=  

 

ax ≤≤ 20  

( )3

2

2

22

22'

2 33
6

xaxxaLa
EI

w
v +−+

−
=  

( )3

2

2

22

222
2 464

24
aaxxaLa

EI

wx
v +−+

−
=  

Now that the theoretical formulation of the problem is complete, a MATLAB script file can 

be created. The script file can be developed in a form which prompts the user to input the 

values for the parameters w, E, I, L, and a. Then, a MATLAB loop can be employed to 

compute the values for the slope and deflection along the length of the beam for a series of 

values of x, measured from the left support at A, starting from x = 0 and ending at x = L. 

Note that it is necessary to include a conditional statement within the loop, so that the proper 

expressions for the determination of unknowns is selected and used in the computations. The 

MATLAB script file for the given beam is provided in Figure 11.8, along with the generated 

plots in Figure 11.9. These plots are for the case when w = 0.2 kip/ft, E = 29000 ksi, I = 100 

in4, L = 20 ft, and a = 10 ft. Using the powerful MATLAB plotting commands and tools, the 

users can control and create the plots in any format they desire. 

 

MATLAB SCRIPT FOR SLOPE AND DEFLECTION 
w=0.2; 
E=29000; 
I=100; 
L=20; 
a=10; 
w=w/12;L=L*12;a=a*12; 
fprintf(' x(in.) Slope(rad) Deflection(in)\n') 
% 

___________________________________________________________________________

_________________ 
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% Computing the slope, and deflection. 
x=linspace(0,L+a,(L+a)/6+1); 
for k=1:1:(L+a)/6+1 
if x(k)<=L 
x1(k)=x(k); 
theta(k)=w*a^2*(L^2-3*x1(k)^2)/(12*E*I*L); 
delta(k)=w*a^2*x1(k)*(L^2-x1(k)^2)/(12*E*I*L); 
fprintf('%4.0f %19.2e %17.2e\n',x(k),theta(k),delta(k)) 
else 
x2(k)=x(k)-L; 
theta(k)=-w*(a^2*L+3*a^2*x2(k)-3*a*x2(k)^2+x2(k)^3)/(6*E*I); 
delta(k)=-w*x2(k)*(4*a^2*L+6*a^2*x2(k)-4*a*x2(k)^2+x2(k)^3)/(24*E*I); 
fprintf('%4.0f %19.2e %17.2e\n',x(k),theta(k),delta(k)) 
end 
end 
% plotting the slope, and deflection. 
subplot(2,1,1),plot(x,theta),title('Slope'),xlabel('x (in)'),ylabel('Slope 

(rad)'),... 
axis([0 360 -0.006 .004]),set(gca,'XTick',[0:60:L+a]),text(10,-0.003,... 
'\theta_1 =wa^2(L^2-3x_1^2)/(12EIL)'),text(40,0.002,'\theta_2 =-

w(a^2L+3a^2x_2-3ax_2^2+x_2^3)/(6EI)') 
subplot(2,1,2),plot(x,delta),title('Deflection'),xlabel('x 

(in)'),ylabel('Deflection (in)'),... 
axis([0 360 -0.6 0.4]),set(gca,'XTick',[0:60:L+a]),,text(10,-0.1,'v_1 

=wa^2x_1(L^2-x_1^2)/(12EIL)'),... 
text(5,0.25,'v_2 =-wx_2(4a^2L+6a^2x_2-4ax_2^2+x_2^3)/(24EI)') 

 

Figure 11.8 Matlab Script 

 

 
Figure 11.9 Variation of slope and deflection along the length of the beam 

 

 

Sample Problems 

Problem 1: A cantilever beam carries a load of 15 KN. Its span is 2m. The cross section is a 

circle of diameter 200 mm. The Young’s modulus of elasticity is 200 KN/m
2
 . Find the 

deflection and slope at the free end. 
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Lecture 12 Deflection of statically determinate beams: Moment Area method, 

 

12.1 Introduction 

 

The initial ideas for the two moment-area theorems were developed by Otto Mohr and later 

stated formally by Charles E. Greene in 1873.These theorems provide a semigraphical 

technique for determining the slope of the elastic curve and its deflection due to bending. 

They are particularly advantageous when used to solve problems involving beams, especially 

those subjected to a series of concentrated loadings or having segments with different 

moments of inertia. 

 

 
Figure 12.1 a, b and c 

 

 

To develop the theorems, reference is made to the beam in Fig. 12–1a. If we draw the 

moment diagram for the beam and then divide it by the flexural rigidity, EI, the “M/EI 

diagram” shown in Fig. 12–1b results.  

 

dx
EI

M
d 







=θ                                                                                                                       (12.1) 

 

Thus it can be seen that the change θd  in the slope of the tangents on either side of the 

element dx is equal to the lighter-shaded area under the M/EI diagram. Integrating from point 

A on the elastic curve to point B, Fig. 12–1c, we have 

 

dx
EI

M
B

A

AB ∫=/θ                                                                                                                      (12.2) 

 

Theorem 1: The change in slope between any two points on the elastic curve equals the 

area of the M/EI diagram between these two points. 

 

The notation AB /θ  is referred to as the angle of the tangent at B measured with respect to the 

tangent at A. From the proof it should be evident that this angle is measured counterclockwise 

from tangent A to tangent B if the area of the M/EI diagram is positive, Fig. 12–1c. 

Conversely, if this area is negative, or below the x axis, the angle AB /θ  is measured clockwise 

from tangent A to tangent B. Furthermore, from the dimensions of Eq. 12.2, AB /θ  is measured 

in radians. 

 

The second moment-area theorem is based on the relative deviation of tangents to the elastic 

curve. Shown in Fig. 12–2c is a greatly exaggerated view of the vertical deviation dt of the 

tangents on each side of the differential element dx. This deviation is measured along a 

vertical line passing through point A. Since the slope of the elastic curve and its deflection are 
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assumed to be very small, it is satisfactory to approximate the length of each tangent line by x 

and the arc ds’ by dt. Using the circular-arc formula  rs θ=  where r is of length x, we can 

write θxddt =   ( )dx
EI

Md =θ  the vertical deviation of the tangent at A with respect to the 

tangent at B can be found by integration, in which case 

 

∫=
B

A

BA dx
EI

M
xt /                                                                                                                   (12.3) 

 

Recall from statics that the centroid of an area is determined from  ∫∫ = xdAdAx Since 

∫ dx
EI

M represents an area of the M/EI diagram, we can also write 

 

∫=
B

A

BA dx
EI

M
xt /                                                                                                                   (12.4) 

 

Here x  is the distance from the vertical axis through A to the centroid of the area between A 

and B, Fig. 12–2b. 

 

The second moment-area theorem can now be stated as follows: 

 

Theorem 2: The vertical deviation of the tangent at a point (A) on the elastic curve with 

respect to the tangent extended from another point (B) equals the “moment” of the area 

under the M/EI diagram between the two points (A and B). This moment is computed 

about point A (the point on the elastic curve), where the deviation BAt /  is to be 

determined. 

 

Provided the moment of a positive M/EI area from A to B is computed, as in Fig. 12.2 b, it 

indicates that the tangent at point A is above the tangent to the curve extended from point B, 

Fig. 12.2 c. Similarly, negative M/EI areas indicate that the tangent at A is below the tangent 

extended from B. Note that in general BAt /  is not equal to ABt /  which is shown in Fig. 12.2 d. 

Specifically, the moment of the area under the M/EI diagram between A and B is computed 

about point A to determine BAt /  Fig. 12.2b, and it is computed about point B to determine 

ABt / . 

 

It is important to realize that the moment-area theorems can only be used to determine the 

angles or deviations between two tangents on the beam’s elastic curve. In general, they do not 

give a direct solution for the slope or displacement at a point on the beam. These unknowns 

must first be related to the angles or vertical deviations of tangents at points on the elastic 

curve. Usually the tangents at the supports are drawn in this regard since these points do not 

undergo displacement and/or have zero slope. Specific cases for establishing these geometric 

relationships are given in the example problems. 
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Figure 12.2 a,b,c and d 

Problem 1: Apply the moment area method to find the slope and deflection at the free end of 

a cantilever beam subject to a concentrated load P applied at the free end. Assume the 

flexural rigidity EI to be constant. 

 

Solution: Applying the moment area theorem I and noting that the tangent at the fixed end A 

is horizontal i.e 0=Aθ  

 

 
(a) 

 
(b) 

 

Figure 12.3 Cantilever beam with concentrated load 
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AB θθ −  is the area of curvature diagram between A and B 

 

∴   ( )L
EI

P
B 







=−
2

1
0θ  

∴   







−=

EI

PL
B

2

2

θ  

The negative sign indicates a clockwise rotation 

Next, applying theorem II, and noting that BBAt ∆=  

 

EI

PL

EI

PLL
Areaxt BBBA

323

2 32 −
=







 −








=×=∆=  

The negative sign indicates that B lies below the tangent at A i.e the deflection is downward. 

 

Laboratory Experiment on Moment Area Method 

 

Aim: - To verify the moment area theorem regarding the slopes and deflections of the beam. 

 

Apparatus: - Moment of area theorem apparatus. 

 

Diagram; 

 

 
 

Theory : - 

According to moment area theorem 

 

1. The change of slope of the tangents of the elastic curve between any two points of the  

deflected beam is equal to the area of M/EI diagram between these two points. 

 

2. The deflection of any point relative to tangent at any other point is equal to the 

moment of the area of the M/EI diagram between the two point at which the 

deflection is required. 

 

Slope at B = Y2 / b 

 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    93 

 

Since the tangent at C is horizontal due to symmetry, 

 

Slope at B = shaded area/EI= 1/EI [Wa
2
/2+WA(L/2-a)] 

 

Displacement at B with respect to tangent at C 

 

=(y1 + y2 ) = Moment of shaded area about B/EI 

 

=1/EI[Wa
2
/2(b+2a/3)+Wa(L/2-a)(b+a/2+L/2)] 

 

Procedure 

 

1.. Measure a, b and L of the beam 

 

2.. Place the hangers at equal distance from the supports A and load them with equal loads 

 

3. . Measure the deflection by dial gauges at the end B (y2) and at the center C (y1) 

 

4.. Repeat the above steps for different loads 

 

Observation Table:- 

 

Length of main span, L (cm)  = 

 

Length of overhang on each side a(cm) = 

 

Modulus of elasticity , E (kg/cm
2
)  = 2 x 10

6
 

 

Sl No Load at each 

Hanger (kg) 

Central 

deflection Y1 

(cm) 

Deflection at 

free end Y2 

(cm) 

Slope at B 

Y2/b 

Deflection at 

C = 

Deflection at 

B (Y1) 

      

 

Calculation:- 

1. Calculate the slope at B as y2 / b (measured value). 

2. Compute slope and deflection at B theoretically from B.M.D. and compare with   

    experimental values. 

3. Deflection at C = y1(measured value). 

4. Deflection at C = Average calculated value 

 

Result :- The slope and deflection obtained is close to the slope and deflection obtained 

by using moment area method. 

 

Sample problems: 

 

Problem 2: A simply supported beam of span 6 m is carrying a load of 12 KN/m. If E = 200, 

000 N/mm
2
 and I is 5.5 x 10

-4
 m

4
. Find the maximum slope at the support and maximum 

deflection at mid span 
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Lecture 13 Deflection of statically determinate beams: Conjugate Beam method, 

 

The conjugate-beam method was developed by H. Müller-Breslau in 1865. Essentially, it 

requires the same amount of computation as the moment-area theorems to determine a 

beam’s slope or deflection; however, this method relies only on the principles of statics, and 

hence its application will be more familiar. 

 

Let us write down the following equations which have been discussed before. 

 

w
dx

dV
=      w

dx

Md
=

2

2

 

EI

M

dx

d
=

θ
   

EI

M

dx

vd
=

2

2

 

 

On integrating 

 

∫= wdxV      [ ]∫ ∫= dxwdxM  

∫ 






= dx
EI

M
θ   ∫ ∫ 















= dxdx
EI

M
v  

 

Here the shear V compares with the slope θ , the moment M compares with the displacement 

v and the external load w compares with the M/EI diagram. To make use of this comparison 

we will now consider a beam having the same length as the real beam, but referred to here as 

the “conjugate beam,” Fig. 13–1. The conjugate beam is “loaded” with the M/EI diagram 

derived from the load w on the real beam. From the above comparisons, we can state two 

theorems related to the conjugate beam, namely, 

 

 
Figure 13.1 Real and Conjugate Beam 
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Theorem 1: The slope at a point in the real beam is numerically equal to the shear at the 

corresponding point in the conjugate beam. 

 

Theorem 2: The displacement of a point in the real beam is numerically equal to the moment 

at the corresponding point in the conjugate beam. 

 

Conjugate Beam Supports 

 

When drawing the conjugate beam it is important that the shear and moment developed at the 

supports of the conjugate beam account for the corresponding slope and displacement of the 

real beam at its supports, a consequence of Theorems 1 and 2. For example, as shown in 

Table 13.1, a pin or roller support at the end of the real beam provides zero displacement, but 

the beam has a nonzero slope. Consequently, from Theorems 1 and 2, the conjugate beam 

must be supported by a pin or roller, since this support has zero moment but has a shear or 

end reaction. When the real beam is fixed supported (3), both the slope and displacement at 

the support are zero. Here the conjugate beam has a free end, since at this end there is zero 

shear and zero moment. Corresponding real and conjugate-beam supports for other cases are 

listed in the table. Examples of real and conjugate beams are shown in Fig. 13.2. Note that, as 

a rule, neglecting axial force, statically determinate real beams have statically determinate 

conjugate beams; and statically indeterminate real beams, as in the last case in Fig. 13.2, 

become unstable conjugate beams. Although this occurs, the M/EI loading will provide the 

necessary “equilibrium” to hold the conjugate beam stable. 

 

Table 13.1 
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Figure 13.2 

 

Example 1: Determine the maximum deflection of the steel beam shown in Fig. 13.3 a. The 

reactions have been computed. E=200 GPa, I=60 x 10
6
 mm

4
 

 

 
Figure 13.3 a Real Beam 

 

Solution: 

 

The conjugate beam loaded with the M/EI diagram is shown in Fig. 13.3 b. Since the M/EI 

diagram is positive, the distributed load acts upward (away from the beam). 

 

 

 
Figure 13.3 b Conjugate beam 
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The external reactions on the conjugate beam are determined first and are indicated on the 

free-body diagram in Fig. 13.3 c. Maximum deflection of the real beam occurs at the point 

where the slope of the beam is zero. This corresponds to the same point in the conjugate 

beam where the shear is zero. Assuming this point acts within the region 90 ≤≤ x m from A’ 

we can isolate the section shown in Fig. 13.3 d. Note that the peak of the distributed loading 

was determined from proportional triangles, that is, ( ) 9//18/ EIxw = . We require V’=0. So 

that ;0=↑÷ ∑ yF   0
2

2

145
=







+− x
EI

x

EI
   x=6.71 m  90 ≤≤ x m OK 

 

 

 
Figure 13.3 c external reaction 

 

 
Figure 13.3 d internal reactions 

 

Using this value for x, the maximum deflection in the real beam corresponds to the moment 

M’. Hence  

 

;0=↑÷ ∑M    ( ) ( ) ( ) 0'71.6
3

1
71.6

71.62

2

1
71.6

45
=+















− M
EIEI

 

( )[ ] ( ) ( )( )[ ]44344626

33

max

10/11060/10200

2.2012.201
'

mmmmmmKN

KNm

EI

KNm
M

−
=−==∆ =-0.0168m=-

16.8 mm 

 

The negative sign indicates the deflection is downward. 

 

 

Sample Problems 

 

Problem 1: Find the deflection at the free end of a cantilever of span L carrying a 

concentrated load of W at a section L/2 from the free end 
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Lecture 14 Deflection of statically determinate beams by energy methods- strain energy 

method, castiglianos theorems, reciprocal theorem, unit load method. Deflection of pin-

jointed trusses, Williot-Mohr diagram  

14.1 Introduction 

 

The semigraphical methods presented in the previous lectures are very effective for finding 

the displacements and slopes at points in beams subjected to rather simple loadings. For more 

complicated loadings or for structures such as trusses and frames, it is suggested that energy 

methods be used for the computations. Most energy methods are based on the conservation of 

energy principle, which states that the work done by all the external forces acting on a 

structure, Ue is transformed into internal work or strain energy, Ui which is developed when 

the structure deforms. If the material’s elastic limit is not exceeded, the elastic strain energy 

will return the structure to its undeformed state when the loads are removed. The 

conservation of energy principle can be stated mathematically as 

 

Ue = Ui 

 

14.2 External Work 

 

The work of a moment is defined by the product of the magnitude of the moment M and the 

angle θd  through which it rotates, that is, θMdU e =  as shown in Figure 14.1. 

 

 
Figure 14.1 

If the total angle of rotation is θ  radians, the work becomes 

 

∫=
θ

θ
d

e MdU
0

 

As in the case of force, if the moment is applied gradually to a structure having linear elastic 

response from zero to M, the work is then 

θMU e
2

1
=  

However, if the moment is already applied to the structure and other loadings further distort 

the structure by an amount 'θ  and M rotates 'θ  and the work is 
'' θMU e =  
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14.3 Strain energy, Bending 

 

Consider the beam shown in Fig. 14.2 a, which is distorted by the gradually applied loading P 

and w.These loads create an internal moment M in the beam at a section located a distance x 

from the left support. The resulting rotation of the differential element dx, Fig. 14.2 b, can be 

found from the relationship ( )dxEIMd /=θ , Consequently, the strain energy, or work stored 

in the element, is determined from the earlier relationship  since the internal moment 

gradually developed. Hence, 

 

EI

dxM
dU i

2

2

=  

 

 
Figure 14.2 

 

The strain energy for the beam is determined by integrating this result over the beam’s entire 

length L. The result is 

 

∫=
L

i
EI

dxM
U

0

2

2
 

 

14.4 Principle of Work and Energy 

 

Now that the work and strain energy for a force and a moment have been formulated, we will 

illustrate how the conservation of energy or the principle of work and energy can be applied 

to determine the displacement at a point on a structure. To do this, consider finding the 

displacement at the point where the force P is applied to the cantilever beam in Figure 14.3 

 

 
Figure 14.3 
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The external work done by the force as shown in Figure 14.4 is ∆= PU e
2

1
 

 

 
Figure 14.4 

 

To obtain the resulting strain energy, we must first determine the internal moment as a 

function of position x in the beam PxM −=  so that 

( )
EI

LP

EI

dxPx

EI

dxM
U

L

o

L

i
622

322

0

2

=
−

== ∫∫  

Equating the external work to internal strain energy and solving for the unknown 

displacement ∆ , we have 

ii UU =  

EI

LP
P

62

1 32

=∆  

EI

PL

3

3

=∆  

Although the solution here is quite direct, application of this method is limited to only a few 

select problems. It will be noted that only one load may be applied to the structure, since if 

more than one load were applied, there would be an unknown displacement under each load, 

and yet it is possible to write only one “work” equation for the beam. Furthermore, only the 
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displacement under the force can be obtained, since the external work depends upon both the 

force and its corresponding displacement. One way to circumvent these limitations is to use 

the method of virtual work or Castigliano’s theorem 
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Lecture 15 Deflection of statically determinate beams by energy methods- strain energy 

method, castiglianos theorems, reciprocal theorem, unit load method. Deflection of pin-

jointed trusses, Williot-Mohr diagram  

 

15.1 Castigliano’s Theorem 

 

In 1879 Alberto Castigliano, an Italian railroad engineer, published a book in which he 

outlined a method for determining the deflection or slope at a point in a structure, be it a 

truss, beam, or frame. This method, which is referred to as Castigliano’s second theorem, or 

the method of least work, applies only to structures that have constant temperature, 

unyielding supports, and linear elastic material response. If the displacement of a point is to 

be determined, the theorem states that it is equal to the first partial derivative of the strain 

energy in the structure with respect to a force acting at the point and in the direction of 

displacement. In a similar manner, the slope at a point in a structure is equal to the first partial 

derivative of the strain energy in the structure with respect to a couple moment acting at the 

point and in the direction of rotation. 

 

To derive Castigliano’s second theorem, consider a body (structure) of any arbitrary shape 

which is subjected to a series of n forces P1, P2, ...., Pn  

Since the external work done by these loads is equal to the internal strain energy stored in the 

body, we can write 

 

Ui  = Ue 

 

The external work is a function of the external loads ( )∑∫= PdxU e , thus 

( )nei PPPfUU ,....,, 21==  

 

Now, if any one of the forces, say Pi is increased by a differential amount dPi the internal 

work is also increased such that the new strain energy becomes  

 

i

i

i

iii dP
P

U
UdUU

∂

∂
+=+  

This value, however, should not depend on the sequence in which the n forces are applied to 

the body. For example, if we apply dPi to the body first, then this will cause the body to be 

displaced a differential amount id∆  in the direction of dPi. By Equation 






 ∆= PU e
2

1
, the 

increment of strain energy would be ii ddP ∆
2

1
. This quantity, however, is a second-order 

differential and may be neglected. Further application of the loads P1, P2, ...., Pn  which 

displace the body  n∆∆∆ ,......,, 21  yields the strain energy 

 

iiiii dPUdUU ∆+=+  

 

Here, as before, Ui  is the internal strain energy in the body, caused by the loads P1, P2, ...., Pn   

and iii dPdU ∆=  is the additional strain energy caused by dPi (
'∆= PU e ). 
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 In Summary then the expression i

i

i

iii dP
P

U
UdUU

∂

∂
+=+  represents the strain energy in the 

body determined by first applying the loads P1, P2, ...., Pn  then dPi  and  the expression 

iiiii dPUdUU ∆+=+  represents the strain energy determined by first applying dPi and then 

the loads P1, P2, ...., Pn   . Since these two expressions must be equal, we require 

i

i

i
P

U

∂

∂
=∆  

which proves the theorem; i.e., the displacement i∆  in the direction of Pi is equal to the first 

partial derivative of the strain energy with respect to Pi. 

 

It should be noted that above expression for displacement is a statement regarding the 

structure’s compatibility. Also, the above derivation requires that only conservative forces be 

considered for the analysis. These forces do work that is independent of the path and 

therefore create no energy loss. Since forces causing a linear elastic response are 

conservative, the theorem is restricted to linear elastic behavior of the material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    104 

 

Lecture 16 Deflection of statically determinate beams by energy methods- strain energy 

method, castiglianos theorems, reciprocal theorem, unit load method. Deflection of pin-

jointed trusses, Williot-Mohr diagram  

 

16.1 Castigliano’s Theorem for Beams 

 

The internal bending strain energy for a beam or frame is given by the expression 

∫=
L

i
EI

dxM
U

0

2

2
.  Substituting the above expression into  

i

i

i
P

U

∂

∂
=∆  and omitting the subscript 

i, we have 

∫∂

∂
=∆

L

EI

dxM

P
0

2

2
 

Rather than squaring the expression for internal moment M, integrating, and then taking the 

partial derivative, it is generally easier to differentiate prior to integration. Provided E and I 

are constant, we have 

EI

dx

P

M
M

L

∫ 








∂

∂
=∆

0

 

where 

∆ = external displacement of the point caused by the real loads acting on the beam or frame. 

 

P= external force applied to the beam or frame in the direction of ∆  

 

M= internal moment in the beam or frame, expressed as a function of x and caused by both  

      the force P and the real loads on the beam. 

 

E= modulus of elasticity of beam material. 

 

I= moment of inertia of cross-sectional area computed about the neutral axis. 

 

If the slope θ  at a point is to be determined, we must find the partial derivative of the internal 

moment M with respect to an external couple moment M’ acting at the point, i.e., 

EI

dx

M

M
M

L

∫ 








∂

∂
=

0
'

θ  

 

Example 1: Determine the displacement of point B of the beam as shown in Figure 16.1 

below, Take E=200 GPa and I=500 (10
6
) mm

4
. 

 

 
Figure 16.1 a 
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Solution: 

 

 
Figure 16.1 b 

 

A vertical force P is placed on the beam at B as shown in Figure 16.1 b 

 

A single x coordinate is needed for the solution, since there are no discontinuities of loading 

between A and B. Using the method of sections, Fig. 16.1 c, we have 

 

 
Figure 16.1 c 

 

∑ =+ 0M    ( ) 0
2

12 =−






−− Px
x

xM  

PxxM −−= 26    x
P

M
−=

∂

∂
 

Setting P = 0, its actual value, yields 

 

26xM −=    x
P

M
−=

∂

∂
 

 

The deflection at B is given by 

( )( ) ( )
EI

KNm

EI

dxxx

EI

dx

P

M
M

L

B

3310

0

2

0

10156
=

−−
=









∂

∂
=∆ ∫∫  
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Lecture 17 Deflection of statically determinate beams by energy methods- strain energy 

method, castiglianos theorems, reciprocal theorem, unit load method. Deflection of pin-

jointed trusses, Williot-Mohr diagram  

 

17.1 Reciprocal Theorem 

 

Maxwell’s law of Reciprocal Deflection 

 

As applied to beam deflections and rotations, Maxwell’s theorem of reciprocal deflections 

has the following three versions: 

 

(1) The deflection at A due to unit force at B is equal to the deflection at B due to unit 

force at A as shown in Figure 17.1 a 

BAAB δδ =  

(2) The slope at A due to unit couple at B is equal to the slope at B due to unit couple at 

A as shown in Figure 17.1 b 

BAAB φφ =  

(3) The slope at A due to unit load at B is equal to the deflection at B due to unit couple 

at A as shown in Figure 17.1 c 

'' BAAB δφ =  

 

 

 
Figure 17.1 

 

17.2 Generalised Maxwell’s Theorem: Betti’s Reciprocal Theorem 

 

Generalised Statement: If an elastic system is in equilibrium under one set of forces with their 

corresponding displacements and if the same system is also in equilibrium under second set 

of forces acting through the same points with their corresponding displacements then the 
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product of the first group of forces and the corresponding displacements caused by second 

group is equal to the product of the second group of forces and the corresponding 

displacements caused by the first group 

 

BBAABBAA PPPP ∆+∆=∆+∆ ''

'''  

Where P  and ∆  constitute first group of forces and their corresponding displacements and 
'P  and '∆  constitute second group of forces and displacements.  

 

That is the virtual work done by the first set of forces acting through the second set of 

displacements is equal to the virtual work done by the second set of forces acting through the 

first set of displacements. 

 

In Betti’s theorem, the symbols P  and ∆  can also denote couples and rotations respectively 

as well as forces and linear deflections i.e  

 

BBAABBAA MMMM θθθθ ''

'' +=+   

Thus according to Betti’s law, we have in general 

 

θθ ∑∑∑∑ +∆==∆ ''''
MPMP  
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Lecture 18 Deflection of statically determinate beams by energy methods- strain energy 

method, castiglianos theorems, reciprocal theorem, unit load method. Deflection of pin-

jointed trusses, Williot-Mohr diagram  

 

 

18.1  Principle of Virtual Work 

 

The principle of virtual work was developed by John Bernoulli in 1717 and is sometimes 

referred to as the unit-load method. It provides a general means of obtaining the displacement 

and slope at a specific point on a structure, be it a beam, frame, or truss. 

 

 
Figure 18.1 a 

 
Figure 18.1 (b) 
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Before developing the principle of virtual work, it is necessary to make some general 

statements regarding the principle of work and energy, which was discussed in the previous 

section. If we take a deformable structure of any shape or size and apply a series of external 

loads P to it, it will cause internal loads u at points throughout the structure. It is necessary 

that the external and internal loads be related by the equations of equilibrium. As a 

consequence of these loadings, external displacements ∆ will occur at the P loads and internal 

displacements will occur at each point of internal load u. In general, these displacements do 

not have to be elastic, and they may not be related to the loads; however, the external and 

internal displacements δ  must be related by the compatibility of the displacements. In other 

words, if the external displacements are known, the corresponding internal displacements are 

uniquely defined. 

 

In general, then, the principle of work and energy states: δ∑∑ =∆ uP  i.e Work of external 

loads = work of internal loads 

 

Based on this concept, the principle of virtual work will now be developed. To do this, we 

will consider the structure (or body) to be of arbitrary shape as shown in Fig. 18.1b. Suppose 

it is necessary to determine the displacement ∆ of point A on the body caused by the “real 

loads” P1, P2 and P3. It is to be understood that these loads cause no movement of the 

supports; in general, however, they can strain the material beyond the elastic limit. Since no 

external load acts on the body at A and in the direction of ∆  the displacement  ∆  can be 

determined by first placing on the body a “virtual” load such that this force P
’
 acts in the 

same direction as ∆  Fig. 18.1 a. For convenience, which will be apparent later, we will 

choose P
’ 
 to have a “unit” magnitude, that is, P

’
=1 The term “virtual” is used to describe the 

load, since it is imaginary and does not actually exist as part of the real loading. The unit load 

P
’
 does, however, create an internal virtual load

 
 u in a representative element or fiber of the 

body, as shown in Fig. 9–6a. Here it is required that P
’ 
 and u be related by the equations of 

equilibrium Once the virtual loadings are applied, then the body is subjected to the real loads 

P1 , P2 and P3 . Figure 18.1 b. Point A will be displaced an amount ∆  causing the element to 

deform an amount dL. As a result, the external virtual force P
’
 and internal virtual load u  “ride 

along” by  ∆  and dL. respectively, and therefore perform external virtual work of 1. ∆  on the 

body and internal virtual work of u.dL on the element. Realizing that the external virtual 

work is equal to the internal virtual work done on all the elements of the body, we can write 

the virtual-work equation as 

 

 
Where 

 

P’ = 1 = external virtual unit load acting in the direction of ∆  

 

u= internal virtual load acting on the element in the direction of dL. 

 

∆ = external displacement caused by the real loads. 
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dL = internal deformation of the element caused by the real loads. 

 

By choosing P
’
 = 1 it can be seen that the solution for ∆  follows directly, Since ∑=∆ udL  

 

In a similar manner, if the rotational displacement or slope of the tangent at a point on a 

structure is to be determined, a virtual couple moment M
’
 having a “unit” magnitude is 

applied at the point. As a consequence, this couple moment causes a virtual load θu   in one of 

the elements of the body. Assuming that the real loads deform the element an amount dL, the 

Rotation θ  can be found from the virtual-work equation 

 

 
where 

 

M
’
 = 1= external   virtual unit couple moment acting in the direction of θ  

θu  = internal virtual load acting on an element in the direction of dL. 

θ  = external rotational displacement or slope in radians caused by the real loads. 

dL = internal deformation of the element caused by the real loads. 

 

This method for applying the principle of virtual work is often referred to as the method of 

virtual forces, since a virtual force is applied resulting in the calculation of a real 

displacement. The equation of virtual work in this case represents a compatibility 

requirement for the structure. Although not important here, realize that we can also apply the 

principle of virtual work as a method of virtual displacements. In this case virtual 

displacements are imposed on the structure while the structure is subjected to real loadings. 

This method can be used to determine a force on or in a structure, so that the equation of 

virtual work is then expressed as an equilibrium requirement. 
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Lecture 19 Deflection of statically determinate beams by energy methods- strain energy 

method, castiglianos theorems, reciprocal theorem, unit load method. Deflection of pin-

jointed trusses, Williot-Mohr diagram 

 

19.1 Method of Virtual Work: Trusses 

 

We can use the method of virtual work to determine the displacement of a truss joint when 

the truss is subjected to an external loading, temperature change, or fabrication errors. Each 

of these situations will now be discussed. 

 

 
Figure 19.1 

 

External Loading. For the purpose of explanation let us consider the vertical displacement 

∆  of joint B of the truss in Fig. 19–1a. Here a typical element of the truss would be one of its 

members having a length L, Fig.19–1b. If the applied loadings P1 and P2  and cause a linear 

elastic material response, then this element deforms an amount  
AE

NL
=∆  where N is the 

normal or axial force in the member, caused by the loads. Applying the expression 

∑=∆ udL.1 , the virtual-work expression for the truss is therefore  

 

∑=∆
AE

nNL
.1  

 

where 

 

1= external virtual unit load acting on the truss joint in the stated direction of ∆  

 

n= internal virtual normal force in a truss member caused by the external virtual unit load. 

 

∆ = external joint displacement caused by the real loads on the truss. 
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N= internal normal force in a truss member caused by the real loads. 

 

L= length of a member. 

 

A= cross sectional area of a member. 

 

E = modulus of elasticity of a member. 

 

Here the external virtual unit load creates internal virtual forces n in each of the truss 

members. The real loads then cause the truss joint to be displaced ∆  in the same direction as 

the virtual unit load, and each member is displaced nL/AE  in the same direction as its 

respective n force. Consequently, the external virtual work  1. ∆  equals the internal virtual 

work or the internal (virtual) strain energy stored in all the truss members, that is, ∑ AEnL /  

 

Temperature. In some cases, truss members may change their length due to temperature. If 

α  is the coefficient of thermal expansion for a member and T∆  is the change in its 

temperature, the change in length of a member is TLdL ∆= α Hence, we can determine the 

displacement of a selected truss joint due to this temperature change is written as 

∑ ∆=∆ TLnα.1  

 

where 

1= external virtual unit load acting on the truss joint in the stated direction of ∆  

 

n= internal virtual normal force in a truss member caused by the  external virtual unit load. 

 

∆  =  external joint displacement caused by the temperature change. 

 

α  = coefficient of thermal expansion of member. 

 

T∆  = change in temperature of member. 

 

L= length of member. 

 

Fabrication Errors and Camber. Occasionally, errors in fabricating the lengths of the 

members of a truss may occur. Also, in some cases truss members must be made slightly 

longer or shorter in order to give the truss a camber. Camber is often built into a bridge truss 

so that the bottom cord will curve upward by an amount equivalent to the downward 

deflection of the cord when subjected to the bridge’s full dead weight. If a truss member is 

shorter or longer than intended, the displacement of a truss joint from its expected position 

can be determined from the earlier expression, written as 

 

∑ ∆=∆ Ln.1  

 

 

Where 

 

1= external virtual unit load acting on the truss joint in the stated direction of ∆  

 

n= internal virtual normal force in a truss member caused by the external virtual unit load. 
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∆  = external joint displacement caused by the fabrication errors. 

 

L∆ = difference in length of the member from its intended size as caused by a fabrication 

error. 

 

   A combination of the right sides of the above three expressions will be necessary if both 

external loads act on the truss and some of the members undergo a thermal change or have 

been fabricated with the wrong dimensions. 

 

Example 1: 

 

The cross-sectional area of each member of the truss shown in Fig. 19.2 a is A=400 mm
2
  and 

E = 200 GPa.  (a) Determine the vertical displacement of joint C if a 4-kN force is applied to 

the truss at C. (b) If no loads act on the truss, what would be the vertical displacement of joint 

C if member AB were 5 mm too short? 

 

 
Figure 19.2 a 

 
Figure 19.2 b 
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Figure 19.2 c 

 

Solution: 

 

Virtual Forces n. Since the vertical displacement of joint C is to be determined, a virtual force 

of 1 kN is applied at C in the vertical direction. The units of this force are the same as those 

of the real loading. The support reactions at A and B are calculated and the n force in each 

member is determined by the method of joints as shown on the free-body diagrams of joints 

A and B, Fig. 19–2b. 

 

Real Forces N. The joint analysis of A and B when the real load of 4 kN is applied to the 

truss is given in Fig. 19–2c. 

 

Virtual-Work Equation. Since AE is constant, each of the terms nNL can be arranged in 

tabular form and computed. Here positive numbers indicate tensile forces and negative 

numbers indicate compressive forces. 

 

Member n(KN) N (KN)  L (m) n N L (KN
2
 m) 

AB 0.667 2 8 10.67 

AC -0.833 2.5 5 -10.41 

CB -0.833 -2.5 5 10.41 

 

∑ 67.10  

Thus 

AE

mKN

AE

nNL
cKN v

267.10
.1 ==∆ ∑  

Substituting the values A=400 mm
2
 = 400(10

-6
) m

2
, E=200 GPa = 200 (10

6
) KN/m

2
 we have 

 

( ) ( )( )2626

2

/1020010400

67.10
.1

mKNm

mKN

AE

nNL
cKN v ==∆ ∑  

 

mmcv 133.0000133.0 ==∆  

 

Case (b) 

 

Here we must apply ∑ ∆=∆ Ln.1  . Since the vertical displacement of C is to be determined, 

we can use the results of Fig. 19.1 b. Only member AB undergoes a change in length, namely, 

of mL 005.0−=∆  
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Thus 

 

∑ ∆=∆ Ln.1  

( )( )mKNKN
vC 005.0667.0.1 −=∆  

mmm
vC 33.300333.0. −=−=∆  

 

The negative sign indicates joint C is displaced upward, opposite to the 1-kN vertical load. 

Note that if the 4-kN load and fabrication error are both accounted for, the resultant 

displacement is then 
vC∆.  0.133 - 3.33 = -3.20 mm (upward). 

 

19.2  Analysis of Statically Determinate Trusses by Method of Joints 

 

The determination of the member forces and support reactions in the truss shown in Figure 

19.3 requires that two force equilibrium equations be written for each of the 8 joints of the 

truss. This yields a total of 16 equations that can be solved to yield the forces in the 13 

members of the truss, and the 3 reactions at the supports at A and E. 

 

 
 

Figure 19.3 A Statically Determinate Truss 

 

 

To obtain the MATLAB solution to this problem, the equilibrium equations for the truss are 

first formulated in a general format as shown in Eq. (19.1). Using this equation, the unknown 

column vector X can be solved for using the MATLAB left division operation as shown in 

Eq. 19.2. For the above truss, the matrices A and B, and the column vector X containing the 

unknowns in the problem are provided in Eq. 19.3. Note that in this equation 22
bac +=  

and 22 99 ba +=  . Note that c and d are the length of the members EF and AH respectively 

as shown in Figure 19.3. When formulating the MATLAB program for this type of problem, 

the “zeros” function can be utilized to generate a series of zeros in the matrix in an easy and 

convenient way. The script file for this truss and the generated output for the case when a = 

10 ft, b = 4 ft, p = 2 kip, q = 3 kip, and r = 3 kip are shown in Figure 19.4. Note that the script 

file for the problem is developed in a fashion to allow the user to enter any specific values for 

the dimensions a and b, and for the applied loads p, q, and r. 

 

AX=B    (19.1) 

 

X=A\B   (19.2) 
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(19.3) 

 

MATLAB Script for method of joints 

 
% Analysis of a Truss Utilizing the Method of Joints 
% 

___________________________________________________________________________

_________________ 
% Program objective: 
% To compute the member forces and support reactions of the given truss 

utilizing 
% the method of joints. 
% 

___________________________________________________________________________

_________________ 
% Data acquisition: 
p=2; 
q=3; 
r=3; 
a=10; 
b=4; 
% 

___________________________________________________________________________

_________________ 
% Computation of the truss member forces and support reactions: 
c=sqrt(a^2+b^2); 
d=sqrt(a^2+9*b^2); 
A(1,:)=[1,a/d,zeros(1,14)]; 
A(2,:)=[0,3*b/d,zeros(1,11),1,zeros(1,2)]; 
A(3,:)=[-1,0,1,zeros(1,13)]; 
A(4,:)=[zeros(1,3),1,zeros(1,12)]; 
A(5,:)=[zeros(1,2),-1,0,1,a/c,0,-a/d,zeros(1,8)]; 
A(6,:)=[zeros(1,5),b/c,1,3*b/d,zeros(1,8)]; 
A(7,:)=[zeros(1,4),-1,zeros(1,4),1,zeros(1,6)]; 
A(8,:)=[zeros(1,8),1,zeros(1,7)]; 
A(9,:)=[zeros(1,9),-1,-a/c,zeros(1,3),-1,0]; 
A(10,:)=[zeros(1,10),b/c,zeros(1,4),1]; 
A(11,:)=[zeros(1,5),-a/c,zeros(1,4),a/c,-a/c,zeros(1,4)]; 
A(12,:)=[zeros(1,5),-b/c,zeros(1,2),-1,0,-b/c,b/c,zeros(1,4)]; 
A(13,:)=[zeros(1,11),a/c,-a/c,zeros(1,3)]; 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    117 

 

A(14,:)=[zeros(1,6),-1,zeros(1,4),-b/c,b/c,zeros(1,3)]; 
A(15,:)=[0,-a/d,zeros(1,5),a/d,zeros(1,4),a/c,zeros(1,3)]; 
A(16,:)=[0,-3*b/d,0,-1,zeros(1,3),-3*b/d,zeros(1,4),-b/c,zeros(1,3)]; 
B=[zeros(11,1);r;0;q;-p;0]; 
X=A\B; 
% 

___________________________________________________________________________

_________________ 
% Outputing the member forces and support reactions: 
fprintf('Member Forces(kip):\n\n') 
fprintf('AB = %5.3f AH = %5.3f BC = %5.3f BH = %5.3f CD = %5.3f CF = %5.3f 

CG = %5.3f\n\n',... 
X(1),X(2),X(3),X(4),X(5),X(6),X(7)) 
fprintf('CH = %5.3f DF = %5.3f DE = %5.3f EF= %5.3f FG = %5.3f GH = 

%5.3f\n\n',... 
X(8),X(9),X(10),X(11),X(12),X(13)) 
fprintf('Support Reactions(kip):\n\n') 
fprintf('Ay = %5.3f Ex = %5.3f Ey = %5.3f\n',X(14),X(15),X(16)) 

 

Matlab output 

 

 
 

Figure 19.4 MATLAB Script for method of joints 

 

19.3  Analysis of Statically Determinate Trusses by Method of Sections 

 

The method of sections for analyzing a truss is normally utilized in situations where only the 

forces in specific members are to be computed. In the given truss, to determine the forces in 

members BC, CH, and GH using this method, these members are cut and two force 

equilibrium equations and one moment equilibrium equation are written for the section of the 

truss as shown in Figure 19.5. The three equations can be arranged in the matrix form as 

shown in Eq. (19.4), and the MATLAB solution for the unknowns in the problem can be 

obtained using the left-division operation as done in the previous method. Note that prior to 

determining the unknown member forces FBC, FCH, and FGH in Eq. (19.4), it is necessary 

to compute the reaction Ay at support A using the equilibrium of the entire truss. The 

expression for Ay is provided in Eq. 19.5. The script file for this problem and the 

corresponding results for the data already presented are provided in Figure 19.6. 

 

                                                            (19.4) 
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Figure 19.5 Free Body Diagram of the Left Section of the Truss 

 

                                                                                             (19.5) 

 

MATLAB SCRIPT FOR TRUSSES WITH METHOD OF Sections 

 
% Analysis of a Truss Utilizing the Method of Sections. 
% 

___________________________________________________________________________

___________________ 
% Program objective: 
% To compute the forces in members BC, CH, and GH of the given truss 

utilizing the method 
% of sections. 
% 

___________________________________________________________________________

___________________ 
% Data acquisition: 
p=2; 
q=3; 
r=3; 
a=10; 
b=4; 
% 

___________________________________________________________________________

___________________ 
% Computation of the support reaction at A: 
Ay=(r*a+2*q*a-3*p*b)/(4*a) 
% 

___________________________________________________________________________

___________________ 
% Computation of the truss member forces: 
c=sqrt(a^2+b^2); 
d=sqrt(a^2+9*b^2); 
A(1,:)=[1,a/d,a/c]; 
A(2,:)=[0,-3*b/d,-b/c]; 
A(3,:)=[0,-3*a*b/d,-3*a*b/c]; 
B=[-p;-Ay;Ay*a+3*p*b]; 
F=A\B; 
% _________________________________________________________________________ 
% _____________________ 
% Outputing the member forces: 
fprintf('Member Forces(kip):\n\n') 
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fprintf('BC = %5.3f CH = %5.3f GH = %5.3f\n',F(1),F(2),F(3)) 

 

 

Matlab output 

 

 
 

 

Figure 19.6 MATLAB SCRIPT FOR TRUSSES WITH METHOD OF Sections 
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Lecture 20 Deflection of statically determinate beams by energy methods- strain energy 

method, castiglianos theorems, reciprocal theorem, unit load method. Deflection of pin-

jointed trusses, Williot-Mohr diagram 

 

 

All the discussions so far on joint displacements of trusses were centred on algebraic methods 

using only geometric relations. It can be easily inferred that the horizontal and vertical 

deflections of all joints can be found by graphical solution. Theoretically, it is possible to 

draw the shape of the transformed truss by using the lengths of members which have been 

changed due to applied loading. These altered lengths can be used as the sides of the 

component triangles. However, the lengths of the members which have undergone alterations 

differ only slightly in terms of stretching or shortening over the original lengths. If plotted to 

the same scale, there can not be any substantial difference between the shape of deformed 

truss and its original. This difficulty can be overcome by using two difference scales in 

plotting the original length L and the changes in length.  

 

   In a truss, a member undergoes translation or rotation under loading. It may be stretched or 

shortened or rotated. We consider a member IJ as shown in Figure 20.1. 

 

 
Figure 20.1 Deformations of a member ij 

After the occurrence of all deformations the member eventually takes a position I’J’. The 

total deformation of the bar consists of (i). A translation of a bar IJ, (ii). A rotation of the bar 

IJ and (iii). A stretching or shortening of the bar IJ. We can analyse the deformation of the 

bar considering three steps. First, we consider the bar to translate by δ  parallel to itself so 

that I takes the position I’ and J takes the position J’’ as shown in Figure 20.1. Next we 

consider rotation θ  of the bar i.e I’J’’ rotates about I’ and assumes new position as I’J’’’ as 

shown in Figure 20.1. Now J’’ rotates over to J’’’. Finally we consider stretching IJ∆  of the 

bar due to its own axial force. In Figure 20.1 the member IJ has been shown as elongated and 

hence it is under tension. In case the force in the member is compressive, it would have been 

shortened. 

 

 In frames, the rotation of a member is quite small. Therefore, we take the linear length J’’J’’’ 

perpendicular to I’J’’ as rotation in stead of the arc length J’’J’’’. The order of the 
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displacements the member undergone is immaterial. It can be any combination of translation, 

rotation and stretching or shortening. 

 

  In contrast to a single member, we now consider two members PQ and QR as parts of a 

frame. Both members are jointed at Q. We assume that P is displaced to P’ and R to R’. 

Further let PQ be shortened by PQ∆   and QR be stretched by QR∆ . Let Q’ be the final 

position of Q’ which is determined as described below. 

 

  The member PQ and QR are separated out at Q. Member PQ moves parallel to itself and 

occupies position P’Q1 as shown in Figure 20.2. Similarly member QR moves parallel to 

itself and occupies the new position R’Q2 as shown in Figure 20.2. Member P’Q1 in its new 

position is made short by a quantity PQ∆ . Therefore Q1 moves to Q3. Similarly member R’Q2 

after its transformation is made elongate by a quantity QR∆ . So Q2 moves over to Q4 . We 

draw a perpendicular to P’Q1 at Q3 . Likewise, we draw a perpendicular to R’Q4 at Q4. Both 

the perpendiculars intersect at Q’. This intersection point will be the position of Q. The 

distance QQ’ indicates the movement of joint Q as shown in Figure 20.2. 

 

   Normally, the displacements of members in a truss are very small when compared to their 

lengths. Therefore, the displacement diagram is drawn on a larger scale showing only the 

actual displacements undergone by members without drawing their specified lengths. In 

Figure 20.2, QQ1Q3Q’Q4Q2Q is the displacement diagram. Such a diagram is called Williot 

diagram of displacement. 

 

 
Figure 20.2 Deformations of truss members 

 

Now we can draw the displacement diagram separately as depicted in Figure 20.3. We take a 

pole o; we draw op corresponding to the displacement of P and or corresponding to the 

displacement of R. Now, we draw deformation pq1 equal to PQ∆  and parallel to PQ. Because 

there is shortening of member PQ, we draw PQ∆  towards P as shown in Figure 20.3. Draw 

rq2 deformation of RQ equal to RQ∆  and parallel to RQ. As the member RQ is elongated, we 

draw RQ∆  away from R. Draw perpendiculars at q1 and q2 . The intersection of these 
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perpendiculars i.e q gives the position of the point. The displacement of Q is given by oq. The 

diagram drawn to determine the deflection is known as Williot diagram. 

 
Figure 20.3 Williot diagram – typical 

 

Now, we consider a truss with three members PQ, QR and RP as shown in Fig 20.4 (a). 

Support Q is hinged. So it can not move and hence there can not be any displacement of Q. 

Because of load W acting at P, members PQ and PR are under compression. The magnitude 

of force in each member is (W/2) cosec 60
o
= 3W . The force in the member QR is tensile 

and its magnitude is WPQ cos 60
o
 = 32W . The point is put on roller supports. Therefore, it 

can move only to the extent of the elongation of the member QR. 

 

 
 

(a) Truss                                         (b) Williot diagram 

 

Figure 20.4 Typical truss deformation 

 

 Now, we will discuss the construction of displacement diagram of the truss. We take a pole o 

as shown in Figure 20.4 b. Point Q will coincide with this pole o because its position is fixed. 

In order to get the position of P on Williot diagram, we proceed as follows. 

  The shortening PQ∆  of member PQ is drawn towards Q in the direction PQ and parallel to it 

by qp2 as shown in Figure 20.4 (b). Likewise, the shortening PR∆ of member PR is drawn 

towards R in the direction of PR and parallel to it by rp1 as shown in Figure 20.4 b. We draw 
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perpendiculars at p1 and p2 which intersect at point p indicating its position. The displacement 

of point P is equal to op in direction and magnitude. 

 

 

20.2 MOHR’S CORRECTION 

 

 Sometimes it may so happen that the displacement of two consecutive joints remains 

unknown. In such a case, the direction of displacement of one of the joints is assumed and 

finally a correction is applied. Let the displacement of joints P and R in the truss as shown in 

Figure 20.5 is unknown. We assume that P moves along PQ. With this assumption, we draw 

the deflected form of the truss. We take a pole o. As the position of the point Q is fixed 

because of hinge, point q coincides with the pole o as shown in Figure 20.5. The joint P 

moves towards Q by PQ∆  because the force in PQ is compressive. Therefore, op is drawn 

parallel to PQ to some scale in the direction of PQ in the Williot diagram. At q, we draw qr1 

by an amount QR∆  in the direction of QR because QR is in tension. At p, we draw r2p by an 

amount RP∆  in the direction of RP as the member is in compression. We erect perpendiculars 

at r1 and r2 . The position of r is fixed by the intersection of these two perpendiculars. The 

point r is shown in Figure 20.5. The displacement of r is given by or in Williot diagram. The 

deflected truss will be P’QR’. In fact R can have only horizontal movement along QR. 

However, in Figure 20.5 (a) it is seen as rotated. So it necessitates a correction for the rotation 

of the truss to bring the movement of R along horizontal line. Because of this reason, the 

deflected truss is rotated by θ   so that R’ will occupy the position R’’ in line with QR and P’ 

will move to P’’ so that the deflected truss can be denoted as P’’QR’’. The displacements of 

R’ and P’ due to rotation θ  will be proportional to the lengths RQ and PR respectively. 

 

 
                (a).  Deflected truss                                  (b). Polar diagram                 

 

Figure 20.5 Williot-Mohr diagram 

 

 The application of correction to Williot diagram is based on the consideration of the fact that 

the movement of R must be only horizontal and that the vertical movement is zero. The 

displacement or in Figure 20.5 (b) is equal to or’ plus r’r. By applying r’o correction, the 
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remaining displacement will be the required displacement r’r. The correction for other joints 

can be obtained by drawing the shape of the truss on or’ as the base. Therefore p’qr’ is the 

correction applied. For PQ. The rotation correction is p’o. This is at right angle to PQ. 

Similarly r’o is the rotation correction for QR and it is at right angles to QR. The deflection 

of P will be p’p and the deflection of r is r’r. The correction applied is known as Mohr’s 

correction. The final deflection diagram is known as Williot-Mohr diagram. 

 

Example 1: Now consider the Howe truss as shown in Figure 20.6. Determine the downward 

deflections at joint B by graphical method. Area of cross section of each member is 400 mm
2
 

and E=200 KN/mm
2
 

 

Solution: 

 

 
Figure 20.6 Howe truss with loading 

 

The forces and displacements in various members due to applied loading are calculated and 

summarized in Table 20.1 

 

Table 20.1 Forces and displacements 

 

Member FP (KN) L(mm) AE(KN) AELFp /=∆ (mm) 

AB +10.25 3000 80000 +0.384 

BC +15.50 3000 80000 +0.581 

CD +15.50 3000 80000 +0.581 

DE +10.75 3000 80000 +0.403 

AF -14.50 4242.64 80000 -0.769 

BF +5.25. 3000 80000 +0.197 

FG -10.25 3000 80000 -0.384 

BG -7.42 4242.64 80000 -0.394 

GC 0 3000 80000 +0.000 

GH -10.75 3000 80000 -0.403 

GD -6.72 4242.64 80000 -0.356 

HD +10.75 3000 80000 +0.403 

HE -15.2 4242.64 80000 -0.806 
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We take the pole as o in Figure 20.7. As point A is fixed, it will coincide with o. 

Displacement of B is assumed along AB. Therefore ab will be parallel to AB. The Williot-

Mohr diagram is completed as shown in Figure 20.7. The Willot diagram is plotted to some 

scale. 

 Vector bb’ represents the displacement of joint B in both direction and magnitude. The 

vertical component of the vector bb’ gives the downward displacement of joint B. Therefore  

mmVB 16.3=∆  . 

 

 
Figure 20.7 Williot-Mohr diagram for a given Howe truss 
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Lecture 21 B M. and S.F. diagrams for statically indeterminate beams – propped cantilever 

and fixed beams. 

 

21.1 Introduction 

 

We know that a cantilever is a beam with one of its ends fixed and the other free. It is a 

determinate structure. Therefore, we can easily calculate the bending moment and shear force 

in a cantilever. However, when the free end or for that matter at any point in the span of the 

cantilever is supported additionally, the support is called a prop. Hence, the name propped 

cantilever. Because of this additional support, a reaction is set up at the propping point. 

Already there exists a vertical reaction and moment at the fixed end. Along with this two 

reactions, one more reaction at the prop is added. So a propped cantilever will have three 

unknowns. But under vertical loading, we have only two equations of static equilibrium 

namely 0=∑ VF  and 0=∑M  . Hence one of the reactions can not be determined with the 

application of static equilibrium conditions alone. Because of this, a propped cantilever 

becomes an indeterminate structure. The degree of indeterminancy here is one. Therefore, we 

require one more equation to solve the problem. The third equation can be obtained from the 

consideration of deflections or slopes. 

 

21.2 Shear force and Bending moment diagrams 

 

Once we determine the redundant in the propped cantilever, we can calculate the other 

support reactions. With known reactions, it is now possible to determine the shear force and 

the bending moment at any section in the beam. This facilitates the drawing of the shear force 

and the bending moment diagrams as usual. 

 

Example 1: Determine the prop reaction in a propped cantilever as shown in Figure 21.1. 

Also draw the SFD and BMD for the propped cantilever. 

 

 
Figure 21.1 Beam with central load 

Solution: 

First we remove the prop and calculate the deflection at B under the central point load as 

( ) ( )
EI

WLL

EI

LW

EI

LW
yPL

48

5

22

2/

3

2/ 323

=×+=  

Now we remove the central load W and introduce the prop. With this prop reaction RB, we 

calculate the upward deflection as 
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EI

LR
y B

PR
3

3

=  

 

As the net deflection at B=0, we have WR
EI

LR

EI

WL
B

B

16

5

348

5
33

=⇒=  

Now we can apply static equilibrium equations and determine the other reaction. Therefore 

∑ =↓+ 0VF    16/1116/5 WWWRA =−= Taking moment of forces about A 

+ Sum of anticlockwise moment is zero. 02/ =×−×+ LWLRM BA  

( ) ( )WLLWWLM A 16/316/52/ =×−=  

Following the usual procedure, the SFD and BMD can be shown in Figure 21.2. 

 

 
Figure 21.2 SFD and BMD diagrams of a propped cantilever beam 

 

 

Sample Example Problems 

 

Example 2: Determine the prop reaction in the beam shown in the Figure below. EI is 

constant. 

 

Solution: 

 

The propped cantilever with loading is shown in Fig. 21.3. We remove the prop at A and 

calculate the deflection at free end due to the given loads (Fig. 21.3(a)). 

 

3
2

612

3

612
6

2

312

3

312 2323

×
×

+
×

+×
×

+
×

=
EIEIEIEI

yPL  

EIEIEIEIEI
yPL

1944648864324108
=+++=  

 

We now introduce the prop at A and calculate the deflection at A (Fig. 21.3(a)). 
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EI

R

EI

R
y AA

PR

243

3

93

=
×

=  

From the relation 

0=− PRPL yy  

 

0
2431944

=−
EI

R

EI

A  

KNRA 8=  

 
Figure 21.3 Deflections of a propped cantilever 

 

 

Example 2 

 

Using the consistent deformation method, evaluate the prop reaction in the beam as shown in 

the Figure 21.4 below. EI Constant. 

 

Solution: 

 

The propped cantilever is shown in Fig. 21.4. We remove the prop at B and allow the 

cantilever to deflect under the given loading as shown in Fig. 21.4(a). 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    129 

 

 

EIEIEIEIEIEIEIEIEI
yPL
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2
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6
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Now we apply a unit load at prop support (Fig. 21.4a)). 

 

The deflection at prop due to this unit load is 

 

EIEI
y R

33.21

3

41 3

1 =
×

=  

The geometrical condition is that the net deflection at prop due to applied loading and the 

prop RB is zero. 

 

RBPL yRy 1=  

KN
EI

EIy

y
R

R

PL

B 35.9
33.21

33.199

1

=×==  

 

 
 

 
Figure 21.4 Beam with UDL and point load 
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Lecture 22 B M. and S.F. diagrams for statically indeterminate beams – propped cantilever 

and fixed beams. 

  

 

Example 1: In the beam shown in Figure 22.1, the prop has sunk by 15 mm. Calculate the 

prop reaction Take E=200 x 10
6
 KN/m

2
  I=5 x 10

-6
 m

4
 

 
Figure 22.1 Prop with UDL and settlement 

 

Solution: 

 

The propped beam with UDL is shown in Fig. 22.1. We remove the prop and calculate the 

deflection at prop. 

 

myPL 56.1
105102008

520
66

4

=
××××

×
=

−
 

 

The deflection due to RB is 

 

B

B

PR R
R

y 042.0
105102003

5
66

3

=
××××

×
=

−
 

 

015.0042.056.1 =− BR  

KNRB 79.36=  
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Lecture 23 B M. and S.F. diagrams for statically indeterminate beams – propped cantilever 

and fixed beams. 

 

 
Figure 23.1 Fixed beam with partial varying load 

 

The fixed beam with partial UDL is shown in Fig. 23.1.We adopt here consistent deformation 

method to determine the fixed-end moments and reactions. We release the fixity at both ends 

and introduce in their places hinge at A and roller at B as shown in Fig. 23.2(a). 

 

 
Figure 23.2 Determinate beam 

 

Thus the fixed-end moments MA and MB are treated as redundants. We denote the rotations 

at A and B under the applied loading as shown in Fig. 23.2(b). 

 

 
Figure 23.2 b) Rotations under redundant MA 

 

Next we apply the redundant MA at A and denote the rotations at both ends as shown in Fig. 

23.2 (b). Finally, we apply the redundant MB at B and denote the rotations at both ends as 

shown in Fig. 23.2 (c). 
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Figure 23.2 c) Rotations under redundant MB 

As the slopes at both ends are zeros, the geometrical conditions require that, 

PMBAPMAAPLA θθθ +=   (a) 

PMBBPMBAPLB θθθ +=   (b) 
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M

EI
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3
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×
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Substituting these values in (a) and (b), 

 

EI

M

EI

M

EI

BA 67.033.15.22
+=   (c) 

EI

M

EI

M

EI

BA 33.167.05.17
+=   (d) 

 

Solving (c) and (d), we get 

 

KNmM A 79.13=    KNmM B 21.6=  

 

The calculation of the reactions is shown in Fig. 23.2(d). The SFD is shown in Fig. 23.2(e). 

Figure 23.2(f) shows the BMD. 

 

 
Figure 23.2 d: Reactions 

 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    133 

 

 
Figure 23.2 e SFD 

 

 
 

Figure 23..2 f BMD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    134 

 

Lecture 24 Application of three moment theorem to continuous and other indeterminate 

beams. 

 

24.1 Introduction 

 

A beam having many supports and covering more than one span is called continuous beam. It 

is nothing but a simple beam extended over many supports on either side and consisted of 

many spans. A continuous beam must have a minimum of two spans and three supports. The 

ends of the continuous beam may be either fixed or propped. The length of spans of a 

continuous beam may be either fixed or propped. The length of spans of a continuous beam 

may be either equal or unequal. Similarly, the moment of inertia in various spans may be 

same or different. A continuous beam is statically indeterminate. Owing to the continuity of 

the beam over the supports, bending moments will exist at these supports. Until these bending 

moments are known, the bending moment diagram (BMD) and the shear force diagram 

(SFD) can not be drawn. 

 

   When a continuous beam is loaded, it deflects with convexity upward at intermediate 

supports and concavity upward over the region of mid-span like that as shown in Figure 24.1. 

 

 
Figure 24.1 Typical continuous beam 

This means hogging moments with tension at the top occur at the supports and sagging 

moments with tension at the bottom at the mid-span. If the ends were simply supported, then 

there would be no bending moment at these ends as shown in Figure 24.1 and the slope at the 

ends would not be zero. On the other hand if the ends were fixed, the slopes at these ends 

would be zero and fixed end moments would occur at these ends. 

 

A continuous beam can be analysed by various methods. A more general method was 

proposed by Clapeyron. This is called Clapeyron’s theorem of three moments.  

 

 In this method we develop an expression for the slope of the beam at a support, say, at B in 

Figure 24.1 in terms of both known and unknown bending moments, considering first span 

AB and then span BC as shown in Figure 24.1. Both the expressions thus developed represent 

one and the same aspect, namely, the slope of the beam at B. Hence they are equal and result 

in an equation connecting the values of the bending moments at A, B and C. If we apply in 

turn this methodology to each support over which the beam is continuous, we can get a 

sufficient number of equations to evaluate all the unknown bending moments, provided that 

the bending moment is zero at two extreme supports if they are pinned or the bending 

moments at two supports are known otherwise or can be determined from the conditions of 

the problem. 
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 Once we determine the bending moment at all supports, the BMD and the SFD for the beam 

can be drawn. 

 

24.2 Clapeyron’s theorem of three moments  

 
Figure 24.2 Derivation of the theorem 

 

Let us consider a two span continuous beam as shown in Figure 24.2. on which a general 

loading acts. We assume EI to be constant throughout. 

  

  The span of AB is L1 and that of BC is L2. The BMD on a corresponding simple beam is 

shown in Figure 24.2 (b). The fixed end moments MA, MB and MC are the support moments 

at A, B and C respectively (Fig 24.2 (c)). In Fig 24.2 (b), a1 is the distance of the center of 

gravity (CG) of the area of the BMD for the span AB from the end A and a2 is the 

corresponding quantity for the span BC from the end C. In Fig 24.2 (c),  1a  is the distance of 

the CG of the area of the support moments for the span AB from the end A and 2a is the 

distance of the corresponding area for the span BC from the end C. 

 Let us first consider AB. The bending moment at any section distance x from A due to 

applied loading as shown in Figure 24.2 (b) is given by Mx. Therefore, the net moment at that 

section is given by Mx-Mx’. From the fundamental bending equation, 

'

2

2

xx MM
dx

yd
EI −=                                                                                                                  (a) 

Multiplying both sides of eq(a) by x 

'

2

2

xx xMxM
dx

yd
EIx −=                                                                                                             (b) 

Integrating Eq. (b) from 0 to L1, we obtain 
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∫∫ ∫ −=
11 1

0

'

0 0

2

2 L

xx

L L

xx dxMdxMdx
dx

yd
EIx                                                                                         (c) 

 

1111

0

1

aAaAy
dx

dy
xEIx

L

−=




 −                                                                                                  (d) 

 

Where A1 is the area of the BMD for the span AB and is given by ∫
1

0

L

xdxM  and A1a1 is the 

moment of area of BMD for the span AB about B and is given by ∫
1

0

L

xdxxM . Similarly 11aA  

holds good for support moments for the span AB and is equal to ∫
1

0

L

xdxxM . 

  Substituting the limits on the left hand side of eq (d), 

11111 0 aAaAy
dx

dy
y

dx

dy
LEI A

atA

B

atB

−=
















−







×−







−








                                                     (e) 

( ) ( )[ ] 11111 0 aAaAyyLEI ABB −=−−−θ                                                                                   (f) 

However deflections at supports A and B are zero. So yA = yB = 0. With these quantities, eq 

(f) becomes 

11111 aAaAEIL B −=θ                                                                                                                (g) 

Here 1A  is the area of support moment diagram shown in Figure 24.2 (b) for span AB. It is 

also equal to the area of trapezium ABDE as shown in Figure 24.2 (c) i.e 

( ) 1
2

1
LMM BA ×+                                                                                                                     (h) 

And 1a is the distance of the CG of area ABDE from A and equal to 

11

1111

2

1

2

1
3

1

2

1

3

2

2

1

LMLM

LLMLLM

AB

AB

+

×+×
 

Obtained by dividing trapezium ABDE into two triangles  shown in Figure 24.2 (b) which is 

equal to 

 
3

2 1L

MM

MM

BA

BA










+

+
                                                                                                                     (i) 

From Eqs (h) and (i), 

 

( ) ( )
( )

( ) 2

1
1

111 2
6

1

3

2

2

1
LMM

MM

LMM
LMMaA BA

BA

BA

BA +=
+

+
×+=                                                 (j) 

Substituting Eq (i) into eq (g), 

 

( )BAB MM
L

aAEIL 2
6

2

1
111 +−=θ  

( )BAB MMLLaAEI 2/66 1111 +−=θ                                                                                       (k) 
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Similarly, we can consider the span BC and take C as the origin, with x positive to the left 

and it can be derived that 

( ) ( )
BCB MML

L

aA
EI 2

6
6 2

2

22 +−=−θ                                                                                      (l) 

 As the directions of x from A in the span AB and from C in the span BC are of the opposite 

nature, the value of the slope at B, Bθ  will have the opposite sign for the span BC. Therefore 

Eq(1) becomes 

 

( )
BCB MML

L

aA
EI 2

6
6 2

2

22 +−=− θ                                                                                       (m) 

Addition of Eqs (k) and (m) yields 

( ) ( )
BCBA MML

L

aA
MML

L

aA
2

6
2

6
0 2

2

22
1

2

11 +−++−=  

BCBA MLMLMLML
L

aA

L

aA
2211

2

22

2

11 22
66

−−−−+=  

 

2

22

2

11
2211

66
22

L

aA

L

aA
MLMLMLML BCBA +=+++  

( )
2

22

2

11
2211

66
2

L

aA

L

aA
LMLLMLM CBA +=+++                                                              (24.1) 

Equation (24.1) is the Clapeyron’s theorem of three moments which can be used to solve 

problems on continuous beams of varying span lengths, different moments of inertia and 

subjected to different types of loading. The three moment equation expresses the relation 

between the bending moments at three successive supports of a continuous beam subjected to 

a certain applied loading on different spans.  
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Lecture 25 Application of three moment theorem to continuous and other indeterminate 

beams 

 

25.1 Introduction 

 

       In this lecture, some example problems will be discussed. The Table 25.1 shows the 

values of and   for standard loading 

 

Table 25.1 Values of 








L

aA 116
 and 









L

aA 226
 for standard loading  

 

Sl 

N

o 

Type of loading LaA /6 11  LaA /6 22  

1 

 

4/3
wL  4/3

wL  

2 

 

( )
( )









−−

−
2

1

22

1

2

2

22

2

2

2
4/

αα

αα

L

L
Lw  

( )
( )









−−

−
2

1

22

1

2

2

22

2

2

2
4/

ββ

ββ

L

L
Lw

 

3 

 

( ) 360/8 wL  ( ) 360/7 wL  

4 

 

( ) 360/7 wL  ( ) 360/8 wL  

5 

 

( ) 332/5 wL  ( ) 332/5 wL  

6 

 

( )( ) ( )[ ]22/ αα −−− LLLLw

 

( )( )22/ αα −LLW  

7 

 

( ) ( )[ ]22
3/ LLLM −−− α  ( )[ ]223/ LLM −+ α  

 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    139 

 

Example 1: 

 

Analyse the beam as shown in Figure 25.1 below with constant EI using Clapeyron’s three 

moment equation. 

 

 
Figure 25.1 Two span beam 

 

 

Solution: 

 

The continuous beam is shown in Fig. 25.1. We denote the left support as A, middle support 

as B, and right support as C. MA = MC = 0 because the supports are simple. From Table 

25.1, 

 

For the left span 23 33.3745
60

76
KNm

L

aA
=××=  

 

For the right span,  23 66.1233
32

56
KNm

L

aA
=××=  

 

From the expression ( )
2

22

2

11

2211

66
2

L

aA

L

aA
LMLLMLM CBA +=+++ , we have 

( ) 66.1233.37342 +=+BM  

KNmM B 57.3=  

 

Example 2: 

 

The moment of inertia of s continuous beam is different for different spans as shown in 

Figure 25.2 . Find the reactions. 

 

Solution: 

 

The beam with M.I. different for different spans is shown in Fig. 25.2. From left to right 

supports are denoted as A, B, and C, respectively. 
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Figure 25.2 Varying MI of beam  

 

IILI

aA 18

33

366 3

11

=
×

×
=  

( )
IILI

aA 8.4
13

35

196 22

22

=−
×

×
=  

IIII
M B

8.418

5

3

3

3
2 +=







 +  

 

KNmM B 25.14= . The computed reactions are shown in Figure 25.3. 

 

 
Figure 25.3 Computed Reactions 

 

Example 3: Draw the SFD and BMD for the continuous beam shown in Figure 25.4. 

 

 
Figure 25.4 Varying load on span 
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Solution: 

 

The two span beam is shown in Fig. 25.4. We denote the supports as A, B, and C. 

 

From Table 25.1, we have for both spans 

 

IILI

aA 270

325.1

61256 3

11

=
×

××
=  

 

IILI

aA 71.285

575.1

5206 3

22

=
×

×
=  

 

From the expression 

 

( )
2

22

2

11

2211

66
2

L

aA

L

aA
LMLLMLM CBA +=+++  

IIII
M B

71.285270

75.1

5

5.1

6
2 +=







 +  

 

KNmM B 53.40=  

The reactions have been calculated in Figure 25.5. 

 

 

 
Figure 25.5 (a) Computed reactions 

 

The SFD is shown in Figure 25.5 (b) and the BMD is shown in Figure 25.5 (c). 
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Figure 25.5 (b) SFD 

 

 
Figure 25.5 c BMD 
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Lecture 26 Application of three moment theorem to continuous and other indeterminate 

beams 
 

In this Lecture, some example problems on other indeterminate beams will be discussed. 

 

Example 1: Using Clapeyron’s theorem, solve the problem of the continuous beam as shown 

in Figure 26.1. EI is constant throughout. 

 

 
Figure 26.1 One end fixed beam 

 

Solution: 

 

The three span continuous beam is shown in Fig. 26.1. The left end of the beam is fixed. Now 

we insert an imaginary span to the left of A as shown in Fig. 26.1(a). 

 

 
Figure 26.1 (a) Imaginary span Lo inserted 

 

The imaginary span is A0A, MAo = 0 

 

From Table 25.1 for span AB,   

 

2
3

75.60
4

396
KNm

L

aA
=

×
=  

From the expression 

 

( )
2

22

2

11

2211

66
2

L

aA

L

aA
LMLLMLM CBA +=+++  

( ) 75.603302 =×++ BA MM  

75.6036 =+ BA MM  
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25.202 =+ BA MM                                                                                                                  (a) 

 

Again from expression ( )
2

22

2

11

2211

66
2

L

aA

L

aA
LMLLMLM CBA +=+++  

 ( ) 75.6033323 =×+++× CBA MMM  

25.204 =++ CBA MMM                                                                                                       (b) 

From Table 25.1 for span CD, ( ) 222 5.405.13
3

15126
KNm

L

aA
=−

×
=   

0=DM  

From expression ( )
2

22

2

11

2211

66
2

L

aA

L

aA
LMLLMLM CBA +=+++  

( ) 5.403323 =++× CB MM  
25.134 KNmMM CB =+                                                                                                          (c) 

Solving (a), (b) and (c), we get MA  = 9.09 kNm, MB  = 2.08 kNm, MC  = 2.86 kNm. 

 

 

Problem 2:  A continuous beam has overhangs on both sides as shown in Figure 26.2 below. 

Apply three moment equation to determine the support moments. EI is constant throughout. 

 
 

 

 

Figure 26.2 Beam with double overhangs 

 

Solution: 

 

The continuous beam with double overhangs is shown in Fig. 26.2. We denote the left 

support as A, middle support B and right support C. The UDL on left overhang will transfer a 

moment = 2 × 1 × 0.5 = 1 kNm to the left support. Similarly, the concentrated load on right 

overhang will transfer a moment = 5 × 0.5 = 2.5 kNm to the right support. For the loaded 

span from Table 25.1, 

 

( ) 2
22

45.9
5.2

15.25.136
KNm

L

aA
=

−××
=  
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( ) 2
21

3
2

12126
KNm

L

aA
=

−××
=  

 

From expression ( )
2

22

2

11

2211

66
2

L

aA

L

aA
LMLLMLM CBA +=+++  

( ) 345.925.225.25.21 +=×+++× BM  

KNmM B 1.1=  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    146 

 

Lecture 27 ILD for determinate structures for reactions at supports, S.F. at given section, 

B.M. at a given section, Maximum shear and maximum bending moment at given section, 

Problems relating to series of wheel loads, UDL less than or greater than the span of the 

beam, Absolute Maximum bending moment. 

 

 
 

Moving loads caused by trains must be considered when designing the 

members of this bridge. The influence lines for the members become an 

important part of the structural analysis. 

 

27.1 Introduction 

 

In the previous lectures we developed techniques for analyzing the forces in structural 

members due to dead or fixed loads. It was shown that the shear and moment diagrams 

represent the most descriptive methods for displaying the variation of these loads in a 

member. If a structure is subjected to a live or moving load, however, the variation of the 

shear and bending moment in the member is best described using the influence line. An 

influence line represents the variation of either the reaction, shear, moment, or deflection at a 

specific point in a member as a concentrated force moves over the member. Once this line is 

constructed, one can tell at a glance where the moving load should be placed on the structure 

so that it creates the greatest influence at the specified point. Furthermore, the magnitude of 

the associated reaction, shear, moment, or deflection at the point can then be calculated from 

the ordinates of the influence-line diagram. For these reasons, influence lines play an 

important part in the design of bridges, industrial crane rails, conveyors, and other structures 

where loads move across their span. 

 

Although the procedure for constructing an influence line is rather basic, one should clearly 

be aware of the difference between constructing an influence line and constructing a shear or 

moment diagram. Influence lines represent the effect of a moving load only at a specified 
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point on a member, whereas shear and moment diagrams represent the effect of fixed loads at 

all points along the axis of the member. 

 

Problem 1:  Construct the influence line for the vertical reaction at A of the beam in Fig. 27.1 

(a) 

 

 

 

 
(a) 

Solution: 

 

Tabulate Values. A unit load is placed on the beam at each selected point x and the value of 

Ay is calculated by summing moments about B. For example, when x=2.5 m and x=5m and 

see Figs. 27–1b and 27–1c, respectively. The results for Ay are entered in the table, Fig. 27–

1d.A plot of these values yields the influence line for the reaction at A, Fig. 27–1e. 

 

 
 

Influence-Line Equation. When the unit load is placed a variable distance x from A, Fig. 27–

1f, the reaction Ay as a function of x can be determined from 
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 ;0=BM   ( ) ( )( ) 011010 =−+− xAy    

xAy
10

1
1 −=  

This line is plotted in Fig. 27–1e. 

 

Problem 1: Draw the influence line for support reaction at B of an overhanging beam as 

shown in Figure 27.2.  and determine the maximum reaction at B when a single load of 30 

KN rolls across the span. 

 

 
Figure 27.2  Overhang beam 

Solution: 

 

The overhang beam is shown in Fig. 27.2. The influence line for reaction RB  is shown in Fig. 

27.2 (a). The reaction RB  is maximum when the load is at C. RB  = 30×1.25 = 37.5 kN. 

 
 

 

Figure 27.2 Influence line for reaction RB 
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Lecture 28 ILD for determinate structures for reactions at supports, S.F. at given section, 

B.M. at a given section, Maximum shear and maximum bending moment at given section, 

Problems relating to series of wheel loads, UDL less than or greater than the span of the 

beam, Absolute Maximum bending moment. 

 

 

 

Problem 1: 

 

Construct the influence line for the shear at point C of the beam in Fig. 28–1a. 

 

 
Figure 28.1 a 

Solution: 

 

Tabulate Values. At each selected position x of the unit load, the method of sections is used 

to calculate the value of Note in particular that the unit load must be placed just to the left 

(x=2.5 m) and just to the right (x=2.5m) of point C since the shear is discontinuous at C, Figs. 

28.1 b and 28.1 c. A plot of the values in Fig. 28.1 d yields the influence line for the shear at 

C, Fig. 28.1 e. 

 

 
Figure 28.1 b 
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Figure 28.1 c 

 

 
Figure 28.1 d and e 
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Figure 28.1 f 

 

Influence-Line Equations. Here two equations have to be determined since there are two 

segments for the influence line due to the discontinuity of shear at C, Fig. 28.1 f. These 

equations are plotted in Fig. 28.1 e. 
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Lecture 29 ILD for determinate structures for reactions at supports, S.F. at given section, 

B.M. at a given section, Maximum shear and maximum bending moment at given section, 

Problems relating to series of wheel loads, UDL less than or greater than the span of the 

beam, Absolute Maximum bending moment. 

 

 

Example 1: 

 

Construct the influence line for the moment at point C of the beam in Fig. 29.1 a. 

 

 
Figure 29.1 a) 

Solution: 

 

 
Figure 29.1 (b) 

 

 
 

Figure 29.1 (c) 
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Figure 29.1 (d) 

 

 
 

Figure 29.1 (e) 

 

Influence-Line Equations. The two line segments for the influence line can be determined 

using ∑ = 0CM along with the method of sections shown in Fig. 29.1 e. These equations 

when plotted yield the influence line shown in Fig. 29.1 d. 

 

 ∑ = 0CM   ( ) 05
10

1
151 =







 −−−+ xxM C        

xM C
2

1
=   mx 50 p≤  

      

        ∑ = 0CM    05
10

1
1 =







 −− xM C  

    xM C
2

1
5 −=        mxm 105 ≤p  
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Lecture 30 ILD for determinate structures for reactions at supports, S.F. at given section, 

B.M. at a given section, Maximum shear and maximum bending moment at given 

section, Problems relating to series of wheel loads, UDL less than or greater than the span of 

the beam, Absolute Maximum bending moment. 

 

30.1 Influence lines for beams 

 

Since beams (or girders) often form the main load-carrying elements of a floor system or 

bridge deck, it is important to be able to construct the influence lines for the reactions, shear, 

or moment at any specified point in a beam. 

 

Loadings. Once the influence line for a function (reaction, shear, or moment) has been 

constructed, it will then be possible to position the live loads on the beam which will produce 

the maximum value of the function. Two types of loadings will now be considered. 

 

Concentrated Force. Since the numerical values of a function for an influence line are 

determined using a dimensionless unit load, then for any concentrated force F acting on the 

beam at any position x, the value of the function can be found by multiplying the ordinate of 

the influence line at the position x by the magnitude of F. For example, consider the influence 

line for the reaction at A for the beam AB, Fig. 30.1. If the unit load is at x=L/2. the reaction 

at A is Ae = ½ as indicated from the influence line. Hence, if the force F KN is at this same 

point, the reaction is Ay = 1F/2 KN. Of course, this same value can also be determined by 

statics. Obviously, the maximum influence caused by F occurs when it is placed on the beam 

at the same location as the peak of the influence line— in this case at x=0 where the reaction 

would be Ay = (1)F KN. 

 

 
Figure 30.1 

 

 

Uniform Load. Consider a portion of a beam subjected to a uniform load wo . Figure 30.2 .  

As shown, each dx segment of this load creates a concentrated force of dF=wo dx on the 

beam. If dF is located at x, where the beam’s influence-line ordinate for some function 

(reaction, shear, moment) is y, then the value of the function is dF y = wo dx y The effect of 

all the concentrated forces dF is determined by integrating 
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over the entire length of the beam, that is, ∫ ∫= ydxwydxw oo . Also, since ∫ ydx  is equivalent 

to the area under the influence line, then, in general, the value of a function caused by a 

uniform distributed load is simply the area under the influence line for the function multiplied 

by the intensity of the uniform load. For example, in the case of a uniformly loaded beam 

shown in Fig. 30.3, the reaction Ay can be determined from the influence line as 

LwwLwareaA oooy
2

1
1

2

1
=×××=×= This value can of course also be determined from 

statics. 

 

 
Figure 30.2 

 
Figure 30.3 

 

Example 1: 

 

Calculate the maximum negative and positive SF and maximum BM at a section 3 m from 

left support in a simple beam of 8 m when a UDL of 13 KN/m for a length of 2 m rolls across 

the beam. 

 

Solution: 

 

The beam is shown in Fig. 30.1 (a). Let the section C be situated at a distance of 3 m from 

left support, i.e., a = 3 m. To get the maximum negative SF we position the head of the load 

at C as in Fig. 30.1 (b). In this position of the load, the ordinate of the negative SF at C is 

(3/8) = 0.375. From similar triangles, the ordinate at tail end of the load is 0.125. The 

maximum negative SF is given by the product of the area of the trapezoidal influence 

diagram and the intensity of load. 
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Figure 30.1 

 

 

 

KNV 5.62
2

375.0125.0
13max −=×







 +
×−=−  
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We can get the maximum positive SF by placing the tail of the load at C as in Fig. 30.1 (c). 

The ordinate of the positive SF is (5/8) = 0.625. The ordinate at the head of the load is 

obtained from similar triangle as 0.25. The maximum positive SF is given by 

 

KNV 375.112
2

25.0625.0
13max =×







 +
×=+  

We can obtain the maximum BM by placing the load about C and as per Fig. 30.1(d). From 

the relationship 

 

CE

DC

CB

AC
=  

 

( )DC

DC

−
=

25

3
 

 

Solving DC = 0.75 and CE = 1.25 m 

 

The peak ordinate at C is (3×5)/8 = 1.875. From similar triangles we can get the ordinates at 

the ends of load as 1.406 and 1.406, respectively as in Fig. 30.1 (d). 

 

The maximum BM is 

 

( ) ( )
KNmM 653.4225.1

2

875.1406.1
75.0

2

875.1406.1
13max =




 ×
+

+×
+

=  
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Lecture 31 ILD for determinate structures for reactions at supports, S.F. at given section, 

B.M. at a given section, Maximum shear and maximum bending moment at given section, 

Problems relating to series of wheel loads, UDL less than or greater than the span of the 

beam, Absolute Maximum bending moment. 

 

 
As the train passes over this girder bridge the engine and its cars will exert vertical reactions 

on the girder. These along with the dead load of the bridge must be considered for design. 

 

31.1 Maximum Influence at a Point due to a Series of Concentrated Loads 

 

Once the influence line of a function has been established for a point in a structure, the 

maximum effect caused by a live concentrated force is determined by multiplying the peak 

ordinate of the influence line by the magnitude of the force. In some cases, however, several 

concentrated forces must be placed on the structure. An example would be the wheel loadings 

of a truck or train. In order to determine the maximum effect in this case, either a trial-and-

error procedure can be used or a method that is based on the change in the function that takes 

place as the load is moved. Each of these methods will now be explained specifically as it 

applies to shear and moment. 

 

Example 1: 

 

Determine the maximum shear at a point 6 m from left support of a simple beam of 15 m 

span when the loading in Figure 31.1 rolls across the beam 

 

Solution: 

 

We use influence line diagram for SF to determine its maximum value. The heavier load on 

the 

section would yield the maximum SF. When the load moves from right to left we place the 

load  of 75 kN on C. The Position 1 of loading is shown in Fig. 31.1 (a)(i). The Influence 

Line diagram (ILD) is shown in Fig. 31.1 (a)(ii). For this Position 1 the SF is 

 

KNV 9.5903.01403.010043.0506.075max =×+×+×+×=  

 

We now place the load    of 100 kN on C. This is shown in Fig. 31.1 (a)(iii). The 

corresponding ILD is shown in Fig. 31.1 (a)(iv). For this Position 3 of loading SF is 
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Figure 31.1 Maximum SF in a simple beam 
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KNV 2.8533.01406.010027.0506.075max =×+×+×−×−=  

 

If we move the loads to the left by an infinitesimal amount we get 

 

KNV 8.1433.01404.010027.0501.075max −=×+×−×−×−=  

 

A slight change in position of loads causes the SF to change its sign. This means the 

maximum SF is 85.2 kN. 

When the load moves from left to right we place the load   of 140 kN on C as in Fig. 31.1 

(a)(v). This is called Position 3. The corresponding ILD is shown in Fig. 31.1 (a)(vi). For this 

Position 3 the SF is 

 

KNV 694.014013.0100max −=×−×−=  

 

Hence, Position 2 gives the absolute maximum SF. 
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Lecture 32 ILD for determinate structures for reactions at supports, S.F. at given section, 

B.M. at a given section, Maximum shear and maximum bending moment at given section, 

Problems relating to series of wheel loads, UDL less than or greater than the span of the 

beam, Absolute Maximum bending moment. 

 

 

 

Example 1: 

 

 Construct the influence line for BM at a section 2.5 m from left support of a simple beam of 

span of 6m. Determine the maximum BM when a UDL of 10 KN/m longer than the span 

moves across the beam. 

 

 

 
Figure 32.1 Influence line for BM at section 2.5 m 

 

 

Solution: 

 

The influence line for BM at a section 2.5 m from left support is shown in Fig. 32.1.  The 

value of BM under the section is 

 

458.1
6

5.35.2
=

×
=xM  

The travelling load consists of UDL longer than the span. The maximum BM is obtained 

when the UDL occupies the entire span. 

 

KNmM 44.46106458.1
2

1
max =×××=  
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Lecture 33 ILD for B.M., S.F., normal thrust and  radial shear of a three hinged arch. 

 

33.1 Three Hinged Arch 

 

 
(a) 

 

 

 
(b) 

 

 
(c) 

 

 
(d) 
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(e) 

Figure 33.1 Three hinged arches 

 

The horizontal thrust at the springings of a three-hinged arch is equal to the bending moment 

at the center of a simply supported beam of the same Influence lines 121 length multiplied by 

1/c. Hence, the influence line for horizontal thrust is the influence line for the free bending 

moment multiplied by 1/ c and is shown in Figure 33.1 (b) 

  

 The influence line for bending moment at point 4 is the influence line for free bending 

moment at 4 minus the horizontal thrust multiplied by r and is given by: 

 

( ) HrMM s −=
44  

 

The influence line is shown at (iii). 

The influence line for thrust at point 4 is given by: 

 

Kαα sincos 24 VHP −=  unit load from 1 to 4 

    Kαα sincos 2VH +=  unit load from 4 to 2 

 

The influence line is shown at (iv). 

The influence line for shear at point 4 is given by: 

 

Kαα cossin 24 VHQ −−=  unit load from 1 to 4 

    Kαα cossin 1VH +−=  unit load from 4 to 2 

 

The influence line is shown at (v). 
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Lecture 34 ILD for B.M., S.F., normal thrust and radial shear of a three hinged arch. 

 

Example 34.1: 

 

 Find the maximum horizontal thrust at a section 10 m from left support in a three hinged 

arch of span 50 m and rise 8 m when a concentrated load of 70 KN rolls across the arch. 

 

Solution: 

 

The three-hinged arch is similar to that shown in Fig. 33.1 (a). Here rise h = 8 m and span L = 

50 m. The magnitude of the rolling load is 70 kN. 

 

From Fig. 33.1  and the expression H=PL/4h, the maximum horizontal thrust is 

 

KNH 375.109
84

5070
=

×
×

=  

The given section is at 10 m from the left support. We assume that the arch is parabolic. With 

the origin at left support we can write the equation of the parabola using generalized 

parameters for span and rise 

 

( )xL
L

h
y −×=

2

4
 

 

( )xL
L

h

dx

dy
2

4
tan

2
−==θ  

 

Substituting values, 

 

( ) 512.01050
50

84
tan

2
=−

×
=θ  

o34.29=θ  

 

The reaction at right support is 

 

KNVB 14
50

7010
=

×
=  

 

When the load is on the left half of the arch, the normal thrust from Expression 

θθ sincos BVHN −=  is 

 

KNN
oo 485.8834.29sin1434.29cos375.109 =−=  

 

When the load is on the right half of the arch, the normal thrust from Expression 

θθ sincos AVHN +=  is 

 

KNN
oo 21.10234.29sin1434.29cos375.109 =+=  
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Lecture 35  Suspension cables, three hinged stiffening girders 

 

 
 

The deck of a cable-stayed bridge is supported by a series of cables attached at various points 

along the deck and pylons 

 

35.1 Introduction 

 

Cables are often used in engineering structures for support and to transmit loads from one 

member to another. When used to support suspension roofs, bridges, and trolley wheels, 

cables form the main load-carrying element in the structure. In the force analysis of such 

systems, the weight of the cable itself may be neglected; however, when cables are used as 

guys for radio antennas, electrical transmission lines, and derricks, the cable weight may 

become important and must be included in the structural analysis. Two cases will be 

considered in the sections that follow: a cable subjected to concentrated loads and a cable 

subjected to a distributed load. Provided these loadings are coplanar with the cable, the 

requirements for equilibrium are formulated in an identical manner. 

 

     When deriving the necessary relations between the force in the cable and its slope, we will 

make the assumption that the cable is perfectly flexible and inextensible. Due to its 

flexibility, the cable offers no resistance to shear or bending and, therefore, the force acting in 

the cable is always tangent to the cable at points along its length. Being inextensible, the 

cable has a constant length both before and after the load is applied. As a result, once the load 

is applied, the geometry of the cable remains fixed, and the cable or a segment of it can be 

treated as a rigid body. 

 

35.2  Cable Subjected to Concentrated Loads 

 

When a cable of negligible weight supports several concentrated loads, the cable takes the 

form of several straight-line segments, each of which is subjected to a constant tensile force. 

Consider, for example, the cable shown in Fig. 35–1. Here θ  specifies the angle of the 

cable’s cord AB, and L is the cable’s span. If the distances L1, L2 and L3 and the loads P1 and 

P2 are known, then the problem is to determine the nine unknowns consisting of the tension 

in each of the three segments, the four components of reaction at A and B, and the sags yC 

and yD. At the two points C and D. For the solution we can write two equations of force 
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equilibrium at each of points A, B, C, and D. This results in a total of eight equations. To 

complete the solution, it will be necessary to know something about the geometry of the cable 

in order to obtain the necessary ninth equation. For example, if the cable’s total length  is 

specified, then the Pythagorean theorem can be used to relate  to each of the three 

segmental lengths, written in terms of θ , yC, yD, L1 and L2 and L3. Unfortunately, this type of 

problem cannot be solved easily by hand. Another possibility, however, is to specify one of 

the sags, either yC and yD.  instead of the cable length. By doing this, the equilibrium 

equations are then sufficient for obtaining the unknown forces and the remaining sag. Once 

the sag at each point of loading is obtained,  can then be determined by trigonometry. 

 

 
Figure 35.1 

 

When performing an equilibrium analysis for a problem of this type, the forces in the cable 

can also be obtained by writing the equations of equilibrium for the entire cable or any 

portion thereof. 

 

35.3  Cable Subjected to Uniform distributed Loads 

 

Cables provide a very effective means of supporting the dead weight of girders or bridge 

decks having very long spans. A suspension bridge is a typical example, in which the deck is 

suspended from the cable using a series of close and equally spaced hangers. 

 

In order to analyze this problem, we will first determine the shape of a cable subjected to a 

uniform horizontally distributed vertical load wo, Fig. 35–2a. Here the x,y axes have their 

origin located at the lowest point on the cable, such that the slope is zero at this point. The 

free-body diagram of a small segment of the cable having a length s∆ is shown in Fig. 35.2 b. 

Since the tensile force in the cable changes continuously in both magnitude and direction 

along the cable’s length, this change is denoted on the free-body diagram by T∆ . The 

distributed load is represented by its resultant force wo x∆  which acts at x∆ /2  from point O. 

Applying the equations of equilibrium yields 
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Figure 35.2 (a) 

 

 
Figure 35.2 (b)  

 

∑ = 0xF     ( ) ( ) 0coscos =∆+∆++− θθθ TTT  

∑ = 0yF     ( ) ( ) ( ) 0sinsin =∆+∆++∆−− θθθ TTxwT o  

∑ = 0oM     ( )( ) 0sincos2/ =∆+∆−∆∆ xTyTxxwo θθ  

 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    168 

 

Dividing each of these equations by x∆  and taking the limit as 0→∆x  and hence 0→∆y , 

0→∆θ  and 0→∆T  , we obtain 

 

( )
0

cos
=

dx

Td θ
                                                                                                                    (35.1) 

( )
ow

dx

Td
=

θsin
                                                                                                                   (35.2) 

θtan=
dx

dy
                                                                                                                          (35.3) 

 

Integrating Eq. 35–1, where T=FH at x=0 we have: 

 

HFT =θcos                                                                                                                        (35.4) 

 

which indicates the horizontal component of force at any point along the cable remains 

constant. 

 

Integrating Eq. 35–2, realizing that 0sin =θT  at x=0  gives 

 

xwT o=θsin                                                                                                                       (35.5) 

 

Dividing Eq. 35–5 by Eq. 35–4 eliminates T. Then using Eq. 35–3, we can obtain the slope at 

any point, 

 

H

o

F

xw

dx

dy
==θtan                                                                                                                (35.6) 

Performing a second integration with y=0 at x=0 yields 

 

2

2
x

F

w
y

H

o=                                                                                                                          (35.7) 

 

This is the equation of a parabola. The constant FH may be obtained by using the boundary 

condition y=h at x=L. Thus 

 

h

Lw
F o

H
2

2

=                                                                                                                          (35.8) 

Finally, substituting into Eq. 35–7 yields 

 

2

2
x

L

h
y =                                                                                                                             (35.9) 

 

From Eq. 35–4, the maximum tension in the cable occurs when  θ  is maximum; i.e., at x=L. 

Hence, from Eqs. 35–4 and 35–5, 

 

( )22

max LwFT oH +=                                                                                                        (35.10) 

 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    169 

 

Or, using Eq. 35–8, we can express Tmax in terms of wo  i.e 

 

( )2

max 2/1 hLLwT o +=                                                                                                   (35.11) 

 

 
 

 
Figure 35.3 
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Realize that we have neglected the weight of the cable, which is uniform along the length of 

the cable, and not along its horizontal projection. Actually, a cable subjected to its own 

weight and free of any other loads will take the form of a catenary curve. However, if the sag-

to span ratio is small, which is the case for most structural applications, this curve closely 

approximates a parabolic shape, as determined here. From the results of this analysis, it 

follows that a cable will maintain a parabolic shape, provided the dead load of the deck for a 

suspension bridge or a suspended girder will be uniformly distributed over the horizontal 

projected length of the cable. Hence, if the girder in Fig. 35–3a is supported by a series of 

hangers, which are close and uniformly spaced, the load in each hanger must be the same so 

as to ensure that the cable has a parabolic shape. 

 

Using this assumption, we can perform the structural analysis of the girder or any other 

framework which is freely suspended from the cable. In particular, if the girder is simply 

supported as well as supported by the cable, the analysis will be statically indeterminate to 

the first degree, Fig. 35–3b. However, if the girder has an internal pin at some intermediate 

point along its length, Fig.35–4c, then this would provide a condition of zero moment, and so 

a determinate structural analysis of the girder can be performed. 
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Lecture 36  Suspension cables, three hinged stiffening girder 

Example 1: 

 

A light cable of length 20 m is supported at two ends at the same level. The supports are at 16 

m apart. The cable supports three loads of 10, 12 and 16 KN dividing the 16 m distance in 

four equal parts. Find the shape of the string and tension in various portions. 

 

Solution: 

 

 
Figure 36.1 Cable with three loads 

 

 

Naturally the shape of the cable is the BM diagram for these loads. Under the three 

concentrated loads the cable takes a profile shown in Fig. 36.1. 

 

The vertical reaction at A 

 

KNVA 5.17465.7
16

4
16

2

12

16

12
10 =++=×++×=  

We now calculate the BM at each joint. 

 

KNmM C 7045.17 =×=  

 

KNmM D 1004014041085.17 =−=×−×=  

 

KNmM E 824880210412810125.17 =−−=×−×−×=  

 

The BMD is shown in Fig. 36.1. Let us assume that the ordinate CC’ be y m. Then, 

 

y
y

DD 429.1
70

100' =×=  

 



Course Materials- Architecture- Structural Analysis  

 

Under revision *, Funded by ETET Odisha                                                                                                    172 

 

y
y

EE 17.1
70

82' =×=  

 

Now  

 

Length AC = 224 y+  

 

Length CD = ( ) 2222 184.04429.14 yyy +=−+  

 

Length DE = ( ) 2222 067.0417.1429.14 yyy +=−+  

 

Length EB = ( ) 2222 3689.1417.14 yy +=+  

 

Total length of the cable = AC+CD+DE+EB 

 























++








++








++








+=

2/1
2

2/1
2

2/1
2

2/1
2

16

3689.1
1

16

067.0
1

16

184.0
1

16
14

yyyy
l  

 

As y is less than 4, we can approximate the length of the cable as 

 










×
++

×
++

×
++

×
+=

162

3689.1
1

162

067.0
1

162

184.0
1

162
14

2222 yyyy
 

{ }[ ]0428.01009375.21075.503125.044 332 +×+×++= −−y  

[ ] 22 3276.0160819.044 yy +=+=  

When  l=20 

203276.016 2 =+∴ y  

Solving y=3.49 m 

 

Now CC’=3.49 m 

mDD 99.449.3429.1' =×=  

mEE 08.449.317.1' =×=  

 

For joints (1), (2) and (3) we get 

( ) 10tantan 12 =− θθoT  

( ) 12tantan 23 =− θθoT  

 

 

Adding all the ab ( ) 16tantan 34 =− θθoT ove three equations we get 

( ) 38tantan 14 =− θθoT  

 

Now 8725.0
4

49.3
tan 1 −=−=θ  because it is clockwise 
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02.1
4

08.4
tan 4 ==θ  

 

Substituting in the above expression ( ){ } ;388725.002.1 =−−oT  KNTo 08.20=  

Now  

 

mAC 31.549.34 22 =+=  

mCD 27.449.3184.04 22 =×+=  

mDE 1.449.3067.04 22 =×+=  

mEB 72.549.33689.14 22 =×+=  

 

753.0
31.5

4'
cos 1 ===

AC

AC
θ  

937.0
27.4

4'''
cos 2 ===

CD

DC
θ  

976.0
1.4

4'''
cos 3 ===

DE

ED
θ  

7.0
72.5

4'
cos 4 ===

EB

BE
θ  

 

 

KN
T

TT o 67.26
753.0

08.20

cos
;cos

1

111 ===
θ

θ  

KN
T

TT o 43.21
937.0

08.20

cos
;cos

2

222 ===
θ

θ  

 

KN
T

TT o 57.20
976.0

08.20

cos
;cos

3

333 ===
θ

θ  

KN
T

TT o 69.28
7.0

08.20

cos
;cos

4

444 ===
θ

θ  

 

Tension in segment AC, T1 = 26.67 KN 

Tension in segment CD, T2=21.43KN 

Tension in segment DE, T3 = 20.57 KN 

Tension in segment EB, T4 = 26.67 KN 

 

The shape of the cable is shown in Fig. 36.1. 
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Lecture 37  Suspension cables, three hinged stiffening girders 

 

Example 1:  A cable is supported at the same level between two points spanning a distance of 

300 m. It carries UDL of 100 KN/m horizontally. If the central dip is 30 m , compute the 

maximum tension in the Cable. 

 

Solution: 

 

The thrust H is given by 
h

wl
H

8

2

=  

KNH 37500
308

300100 2

=
×
×

=  

The maximum tension T occurs at the supports of a cable. Therefore, the maximum tension in 

a uniformerly distributed cable is given by  

 
2

max

2/
1 







+=
H

wL
HT  

 

KNT 74.40388
375002

300100
137500

2

max =








×
×

+×=  

 

Example 2: A suspension cable has a span of 250 m and its central dip is 25m. It is subjected 

to UDL of 3 KN per horizontal metre. Determine the maximum and minimum tension in the 

cable. Calculate the horizontal and vertical forces in each tower under the following two 

conditions a) when the cable passes over frictionless rollers on the top of the tower and b) 

when the cable is firmly clamped to saddles carried on frictionless rollers on the top of the 

tower. In each case, the anchor cable also called back stay is inclined at 30
o
 to the vertical. 

 

Solution: 

 

The tension in the cable is maximum at its ends and minimum at its lowest point. The 

minimum tension is equal to H. 

 

KNH 5.937
258

2503 2

=
×

×
=  

 

Sag ratio r=25/250=0.1 

 

KNT 72.10091.01615.937 2

max =×+=  

 

Case (a) When the cable passes over frictionless rollers on top of the tower 

 

Under this circumstances the tension in the back stay = tension in the cable 

 

From Figure 37.1 we have Vertical load on the tower   

( )21 coscos αα += TVp  
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Here VT =1cosα , the vertical reaction at the left end. 

 

i.e ( ) ( ) KNwLV 3752/25032/ =×==  

 

2α  is the angle of the back stay with vertical and = 30
o
 

 

KNVP 44.124930cos72.1009375 =+=  

 

The horizontal shear is 

 

( )21 sinsin αα −= TH p  

 

 
Figure  37.1 

 

However, KNHT 5.937sin 1 ==α  

 

2max sinαTT =   KNT
o 86.50430sin72.1009 ==   

 

KNH P 64.43286.5045.937 =−=  

 

(b) When the cable is connected to the saddle 

 

There is no horizontal shear on towers because rollers do not allow it. Hence, horizontal 

components are balanced. 

 

KNHTT AC 5.937sinsin 21 === αα  

 

TA = (937.5/sin30)=1875KN 

 

We obtain the vertical force as 

 

21 coscos αα ACP TTV −=  

 

However  KNTC 375cos 1 =α  

KNVP 8.199830cos1875375 =+=  
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Lecture 38  Suspension cables, three hinged stiffening girders. 

 

38.1 Introduction  

 

Since the cable of the suspension bridge is the main load bearing member, the curvature of 

the cable of an unstiffened bridge changes as the load moves on the decking. To avoid this, 

the decking is stiffened by provision of either a three hinged stiffening girder or a two hinged 

stiffening girder. The stiffening girder transfers a uniform or equal load to each suspender, 

irrespective of the position of the load on the decking.  

 

Example 1: 

 

The suspension bridge in Fig. 38.1 a is constructed using the two stiffening trusses that are 

pin connected at their ends C and supported by a pin at A and a rocker at B. Determine the 

maximum tension in the cable IH. The cable has a parabolic shape and the bridge is subjected 

to the single load of 50 kN. 

 

Solution: 

 

The free-body diagram of the cable-truss system is shown in Fig. 38.1 b. As per the 

expression HFT =θcos , the horizontal component of cable tension at I and H must be 

constant, FH, Taking moments about B, we have 

 

( ) ( ) ( ) 09502424 =+−− mKNmAmI yy  

75.18=+ yy AI  

 

 

 

 

 
(a) 
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(b) 

 

Figure 38.1 

 

 

 
Figure 38.1 (c) 

 

If only half the suspended structure is considered, Fig. 38.1 c, then 5 summing moments 

about the pin at C, we have 

( ) ( ) ( ) ( ) 01212614 =−−− mAmImFmF yyHH  

Hyy FAI 667.0=+  
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From these two equations, 

 

HF667.075.18 =  

 

KNFH 125.28=  

 

the value of an assumed uniform distributed loading wo is given by 

 

( )( )
( )

mKN
m

mKN

L

hF
w H

o /125.3
12

8125.2822
22

===  

the maximum tension in the cable Tmax is given by 

 

( ) ( ) ( ) KNmmmhLLwT o 9.46)8(2/12112125.32/1
22

max =+=+=  
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Lecture 39  Suspension cables, three hinged stiffening girders. 

 

39.1 Influence Line Diagrams of stiffening girder 

 

 When the loads move over a suspension bridge, it is quite well known that because of its 

own characteristics, the shape of the cable gets distorted continuously. However, suspension 

bridges are meant for heavy traffic. Therefore, it is desirable that the roadway must be 

maintained at the same grade as far as possible for all conditions of road traffic. This means 

that the cable must remain in its original designed geometrical configuration. This objective 

is achieved by stiffening the cable with girders. The girders used to halt the distortion of the 

cable are called stiffening girders.  

 

 

Example 1: 

 

The span of a three hinged stiffening girder bridge is 350 m and its central dip is 40 m. A 

single load of 70 KN rolls along the bridge. Determine the horizontal thrust H at a section 60 

m from the left support as well as when the load is at 40 m from the left support. Also find 

the maximum value of H. Find the maximum load w and the maximum positive moment 

under the load when it is 50 m from left support as well as the maximum shear force at the 

same section. 

 

Solution: 
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Figure 39.1 a) Three hinged stiffening girder 

 

The ILD for H is shown in Fig. 39.1 (b). The maximum ordinate is at mid span.  

 

 

 
Figure 39.1 (b) Influence line for H 

 

KNH 1875.2
404

350
max =

×
=  

The horizontal reaction at 60 m from left support is obtained from similar triangles. 

KNH 5.5260
175

1875.2
7060 =××=  

The horizontal reaction at 40 m from left support where the load is situated is obtained 

from similar triangles. 

 

KNH 3540
175

1875.2
7040 =××=  

 

Maximum value of H = 2.1875 x 70 =  153.125 KN 

 

From Figure 39.1 (c), 
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Figure 39.1 c Influence line for w 

 

mKNw /4.0
350

2
70max =×=  

 

The maximum positive BM under the load, i.e., at 50 m from the left support is 

 

( ) ( )
KNmM 86.2142

350

5023505035050
70

2max =
×−×−×

×=  

Here the section is at 50 m from left support. It is < [(350/4) = 87.5 m]. Therefore from 

Fig. 39.1 (d), the maximum positive shear at the section is 

 

 
Figure 39.1 d Influence line for shear force x < L/4 

 

KNF 15
350

502

2

1
70max =







 ×
−=  
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Lecture 40  Suspension cables, three hinged stiffening girders. 

 

40.1 Introduction to Three hinged stiffening girder  

 

Problem 1: The two parts of a three hinged stiffening girder of a suspension bridge are 200 m 

and 150 m long respectively. Find the position and magnitude of the maximum bending 

moment due to a UDL of w KN/m for 75 m on both sides of the central hinge. 

 

Solution: 

 

The two parts of the three-hinged stiffening girder is shown in Fig. 21.46. The position of the 

applied UDL w.r.t. the central hinge is also shown in Fig. 21.46. 

 

 

The left reaction www
ww

VCA 29.6411.2418.40
2

75
150

350

750

2

75
150

350

75
=+=







 −+






 +=  

 

wwwVB 71.8529.64150 =−=  

 

We assume that the maximum BM occurs at a section X from left support. The distance 

of section X is x. 

 

( ){ } ( ){ }




 −−××−−−= xxwwxM x 20075
2

1
2007529.64  

= 







−+− 5.781229.189

2

2

x
x

w                                                                                            (40.1) 

Differentiating Eq. (40.1) w.r.t x and equating to zero, 

[ ]029.189 =+−= xw
dx

dM x  

 

Solving x=189.29 

 

Substituting this in Equation (41.1), we get 
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KNmxwM 85.101025.781229.18929.189
2

29.189 2

max =







−+−=  

The maximum BM occurs at 189.29 m from left support. 

 

 

Problem 2: The span of a three-hinged stiffening girder bridge is 350 m and its central dip is 

40 m. A single load of 75 KN rolls along the bridge. Determine the horizontal thrust H at a 

section 60 m from the left support as well as when the load is at 40 m from the left support. 

Also, find the maximum value of H. Find the maximum load w and the maximum positive 

moment under the load when it is 50 m from left support as well as the maximum shear force 

at the same section. 

 

Solution: 

 

The ILD for H is shown in Fig. 21.42(b). The maximum ordinate is at mid span. 

 

KNH 1875.2
404

350
max =

×
=  

The horizontal reaction at 60 m from left support is obtained from similar triangles. 

 

KNH 5.5260
175

1875.2
7060 =××=  

 

The horizontal reaction at 40 m from left support where the load is situated is obtained from 

similar triangles. 

 

KNH 3540
175

1875.2
7040 =××=  

Maximum value of KNH 125.153701875.2 =×=  

 

From Figure 21.42 (c)  

 

mKNw /4.0
350

2
70max =×=  

 

The maximum positive BM under the load, i.e., at 50 m from the left support is 

 

( ) ( )
KNmM 86.2142

350

5023505035050
70

2max =
×−×−×

×=  

Hence the section is at 50 m from left support. It is < [(350/4)=87.5 m ]. Therefore from 

Fig. 21.43(b), the maximum positive shear at the section is 

 

KNF 15
350

502

2

1
70max =







 ×
−=  
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Lecture 41 Introduction to space frames 

 

 

41.1 Introduction 

 

Normally the centre lines of bars, forces applied and support reactions in the case of plane 

trusses lie in a plane. When all these lie in different planes i.e in three dimensional space, 

such a structure is called a space truss or space frame which is nothing but an assemblage of 

bars in three dimensional space. Tetrahedron is the simplest space frame consisting of six 

members. Antenna towers, transmission line towers, guyed masts, derricks, offshore 

structures etc are some of the common examples of space frames. We can construct a space 

frame from the basic tetrahedron by adding three new members and a joint. To get a stable 

space frame, we have to arrange adequate number of bars in a suitable manner starting with a 

basic tetrahedron. There are six bars and four joints in the basic tetrahedron. For each joint 

added, we have now three additional members. Therefore, we can have a reaction between 

the member of bars (b) and the number of joints (j) as given below 

b-6=3(j-4) 

b=3j-6                                                                                                                                  (41.1) 

 

Equation (41.1) gives the minimum number of bars required to construct a stable space truss 

or space frame. If the number of bars in the space truss is less than that required by Equation 

(41.1), then we consider the space frame as unstable. In Contrast,  if the number of bars is 

more than the minimum number required then the space frame is considered internally 

indeterminate. 

 

 We can now analyze a space frame on the basis of three coordinate axes, namely, X, Y and 

Z. Here axes X and Y are assumed to lie on a horizontal plane and Z in a vertical plane. We 

also assume that the joints in a space frame are pinned and that they carry only axial forces. A 

force in space or in a member of a space frame can be resolved into three components along 

X, Y and Z axes. So, for maintaining equilibrium at a joint, the algebraic sum of the 

components of all forces along the reference axes must be zero. Therefore, it can be 

concluded that a system of concurrent non-planar force is in equilibrium if  

0=∑ XF      0=∑ yF    and 0=∑ zF                                                                            (41-2)   

 

41.2 Methods of Tension Coefficients 

 

The method of tension coefficients is a tabular technique of carrying out joint resolution in 

either two or three dimensions. It is ideally suited to the analysis of pin-jointed space-frames. 

 

Consider an individual member from a pin-jointed plane-frame, e.g. member AB shown in 

Figure 41.1 with reference to a particular X-Y co-ordinate system. 
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Figure 41.1 Coordinate systems 

 

If AB is a member of length LAB having a tensile force in it of TAB, then the components of 

this force in the X and Y directions are TAB Cosθ and TAB Sinθ respectively. 

 

If the co-ordinates of A and B are (XA, YA) and (XB, YB), then the component of TAB in the x-

direction is given by : 

 

x-component = 
( ) ( )ABAB

AB

AB

AB XXt
L

XX
T −=

−
 

where 

 

AB

AB

AB
L

T
t =  

and is known as the tension coefficient of the bar. Similarly, the component of TAB in the y-

direction is given by: 

y-component = 
( ) ( )ABAB

AB

AB

AB YYt
L

YY
T −=

−
 

If at joint A in the frame there are a number of bars, i.e. AB, AC … AN, and external loads 

XA   and YA acting in the X and Y directions, then since the joint is in equilibrium the sum of 

the components of the external and internal forces must equal zero in each of those directions. 

Expressing these conditions in terms of the components of each of the forces then gives: 

( ) ( ) ( ) 0............ =+−+−+− AANANACACABAB XXXtXXtXXt                                      (41.3) 

( ) ( ) ( ) 0............ =+−+−+− AANANACACABAB YYYtYYtYYt                                                (41.4) 

A similar pair of equations can be developed for each joint in the frame giving a total number 

of equation equal to (2×number of joints) In a statically determinate triangulated plane-frame 

the number of unknown member forces is equal to [(2×number of joints)−3], hence there are 

three additional equations which can be used to determine the reactions or check the values of 

the tension coefficients. Once a tension coefficient (e.g. tAB) has been determined, the 

unknown member force is given by the product: 

ABABAB LtT =   (Note: TAB = TBA) 

Note: A member which has a −ve tension coefficient is in compression and is a strut. 
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Lecture 42 Introduction to space frames 

 

Problem 1: Analyse the space frame by method of tension coefficients 

 

Solution: 

 

The space frame is shown in Fig. 22.61. Now we determine the coordinates of all points as 

shown in Fig. 22.61(a) by taking point A as origin with coordinate axes as shown in Fig. 

22.61(a). 

 

 
 

Using these coordinates we calculate the length of members. 

 

( ) ( ) ( ) mLAC 34.50405.205.2
222 =−+−+−=  

 

( ) ( ) ( ) mLBC 34.50455.205.2
222 =−+−+−=  

 

( ) ( ) ( ) mLCD 5.2445.25.25.25
222 =−+−+−=  

 

( ) ( ) ( ) mLDE 34.5405.2555.7
222 =−+−+−=  

 

( ) ( ) ( ) mLDF 34.5405.2055.7
222 =−+−+−=  

 

( ) ( ) ( ) mLAD 87.60405.205
222 =−+−+−=  
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We consider joints one by one. We first consider joint C 

 

( ) ( ) ( ) 0=+−+−+− CCDCDCBCBCACA Xxxtxxtxxt                                                               (a) 

 

( ) ( ) ( ) 0=+−+−+− CCDCDCBCBCACA Yyytyytyyt                                                               (b) 

 

( ) ( ) ( ) 0=+−+−+− CCDCDCBCBCACA Zzztzztzzt                                                                 (c) 

 

Substituting values in (a), (b) and (c), we get 

 

( ) ( ) ( ) 0505.255.205.20 =+−+−+− CDCBCA ttt                                                                      (d) 

 

20=++ CDCBCA ttt                                                                                                                    (e) 

 

( ) ( ) ( ) 005.25.25.255.20 =+−+−+− CDCBCA ttt                                                                      (f) 

 

0=+ CBCA tt                                                                                                                              (g) 

 

( ) ( ) ( ) 00444040 =+−+−+− CDCBCA ttt                                                                                 (h) 

 

0=+ CBCA tt                                                                                                                              (i) 

 

Substituting (g) in (e), we get 20=CDt                                                                                    (j) 

 

Next we consider joint D 

 

( ) ( ) ( ) ( ) 0=+−+−+−+− DDADADFDFDEDEDCDC Xxxtxxtxxtxxt                                   (k) 

 

( ) ( ) ( ) ( ) 0=+−+−+−+− DDADADFDFDEDEDCDC Yyytyytyytyyt                                   (l) 

 

( ) ( ) ( ) ( ) 0=+−+−+−+− DDADADFDFDEDEDCDC Zzztzztzztzzt                                   (m) 

 

Substituting values 

 

( ) ( ) ( ) ( ) 005055.755.755.2 =+−+−+−+− DADFDEDC tttt                                                   (n) 

 

02 =−++− DADFDEDC tttt                                                                                                      (o) 

 

( ) ( ) ( ) ( ) 005.205.205.2555.2 =+−+−+−+− DADFDEDC tttt                                                (p) 
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0=−− DADFDE ttt                                                                                                                     (q) 

 

( ) ( ) ( ) ( ) 0040404044 =+−+−+−+− DADFDEDC tttt                                                            (r) 

 

0=++ DADFDE ttt                                                                                                                     (s) 

 

From (r) DADFDE ttt −=+                                                                                                         (t) 

 

Substituting (j) and (t) in (o), we get KNmt DA 67.6−=                                                            (u) 

 

Substituting (u) in (q), we get                                                                                                  (v) 

 

67.6−=− DFDE tt                                                                                                                    (w) 

 

Substituting (u) in (s) 

 

67.6=+ DFDE tt                                                                                                                       (x) 

 

( ) ( ) 0=+ DEtxw                                                                                                                         (y) 

 

Substituting (y) in (x), 67.6=DFt                                                                                            (z) 

 

Joint A 

 

( ) ( ) 00 =+−+− ADADACAC xxtxxt  

 

Substituting values 

 

( ) ( ) 00 =+−+− ADADACAC xxtxxt  

 

Substituting values 

 

( ) ( ) 00505.2 =−+− ADAC tt  

 

02 =+ ADAC tt                                                                                                                          (1) 

 

Substituting (u) in (l), KNmt AC 34.13=                                                                                   (2) 

 

Substituting (2) in (g), KNmtCB 34.13−=                                                                               (3) 
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We now calculate the forces in members and present it in the following Table 42.1 

Member Length in m Tension Coefficients 

in KN/m 

Force in KN 

AC 5.34 13.34 71.24 

BC 5.34 -13.34 -71.24 

AD 6.87 -6.67 -45.82 

CD 2.5 20 50 

DE 5.34 0 0 

DF 5.34 6.67 35.62 
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Appendix-A 

Slopes and Deflections in Beams 
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Appendix-B 

Geometrical Properties of Areas 
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Appendix-C 

Fixed End Moments 
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