

 NM Institute of Engineering

 &

 Technology

LECTURE NOTES

ON

Object Oriented Methodology (JAVA)

3rd Semester, Computer Science & Engineering

Compiled by

Hiren Kumar Praharaj

 Lecturer in Department of Computer Science & Engineering

 NM Institute of Engineering & Technology, Bhubaneswar

CONTENTS

Sl.No Chapter Name Page No

1 PRINCIPLE OF OBJECT ORIENTED
PROGRAMMING

1-7

2 INTRODUCTION TO JAVA 8-15

3 OBJECTS AND CLASSES 16-20

4 INHERITANCE 21-26

5 POLYMORPHISM 27-29

6 PACKAGES: PUTTING CLASSES TOGETHER 30-36

7 EXCEPTION HANDLING 37-40

KIIT Polytechnic 1

OBJECT ORIENTED METHODOLOGY

Unit-I

PRINCIPLE OF OBJECT ORIENTED PROGRAMMING

What is object oriented programming Language?

Object Oriented Programming is a paradigm that provides many concepts such as

Object based features, inheritance, data binding and polymorphism

Example of object oriented programming languages:

 Simula.

 Smalltalk

 C++

 JAVA

 Python

Basic concept OOPs (Object Oriented Programming System)

 Object

 Class

 Data abstraction and encapsulation

 Inheritance

 Polymorphism

 Dynamic binding

 Message passing

Object

 Instance of class is known as object.

 In other words objects are the basic runtime entities in an object-oriented system.

 Any entity that has state and behavior.

 For example: chair, pen, table, keyboard, bike etc are objects.

 It can be physical and logical.

Class

 Collection of objects is known as class.

 It is a user defined data type

 It binds data member as well as member function together.

Abstraction
 Hiding internal details and showing functionality is known as abstraction. For example: phone call, we

don't know the internal processing.

 In java, we use abstract class and interface to achieve abstraction.

Encapsulation
 Binding (or wrapping) code and data together into a single unit is known as encapsulation. For

example: capsule, it is wrapped with different medicines.

 A java class is the example of encapsulation. Java bean is the fully encapsulated class because all the
data members are private here.

KIIT Polytechnic 2

Inheritance

 When one object acquires all the properties and behaviors of parent object i.e. known as

inheritance.

 It provides code reusability. It is used to achieve runtime polymorphism.

Benefits of Inheritance

 Reusability - facility to use public methods of base class without rewriting the same.

 Extensibility - extending the base class logic as per business logic of the derived class.

Polymorphism

 Polymorphism is another important OOP concept.

 Polymorphism means the ability to take more than one form.

 That means one name multiple form.

There are two types of polymorphism

 Compile time polymorphism

 Run time polymorphism

Dynamic Binding

 Binding refers to the linking of a procedure call to the code to be executed in response to the call.

 Dynamic binding means that the code associated with a given procedure call is not known until

the time of the call at runtime.

Message Communication
 An object-oriented program consists of a set of objects that communicate with each other. The

process of programming in an object-oriented language, therefore, involves the following basic

steps:

 Creating classes that define objects and their behavior.

 Creating objects from class definitions,

 Establishing communication among objects.

KIIT Polytechnic 3

BENEFITS OF OOP:-

 Code reusability is provided.

 Code duplication is avoided.

 Software complexity can be easily managed.

 Object oriented Systems can be easily upgraded from small to large systems.

 It is easy to partition the work in a project based on objects.

PROGRAM PARADIGM

Monolithic Programming language:-

 Data variables are declared globally and the statements are written in sequence.

 In this programming language, the concept of sub program does not exist.

 Examples: - BASIC, ASSEMBLY

Procedural programming language:-

 Programs are divided into number of segments known as sub programs.

 Thus, it focuses the functions apart from data.

 Control is transferred using ‘goto’ statement.

 Data is global.

 All programs share the same data.

 Example: -C, FORTRAN, COBOL.

Structured programming language: -

 Larger programs are developed, divided into multiple sub models and procedures.

 Each module has its own set of local and program codes.

 User defined data types are introduced in this programming language.

 Examples: - PASCAL, C

Object Oriented Programming Language: -

 Problems are divided into objects.

 It is not possible to access data freely.

 Data hiding is possible.

 It supports bottom up approach in programming design.

 Object can exchange data through functions.

KIIT Polytechnic 4

UNIT-II

Java Programming- History of Java

 Java is a general-purpose, true object-oriented programming language developed by Sun

Microsystems of USA in 1991.

 Originally called Oak by James Gosling, one of the inventors of the language.

 It is the incremented version C and C++.

 That means JAVA inherits the properties of C and C++.

Java Version History

There are many java versions that has been released. Current stable release of Java is Java version

jdk17

1. JDK Alpha and Beta (1995)

2. JDK 1.0 (23rd Jan, 1996)

3. JDK 1.1 (19th Feb, 1997)

4. J2SE 1.2 (8th Dec, 1998)

5. J2SE 1.3 (8th May, 2000)

6. J2SE 1.4 (6th Feb, 2002)

7. J2SE 5.0 (30th Sep, 2004)

8. Java SE 6 (11th Dec, 2006)

9. Java SE 7 (28th July, 2011)

10. Java SE 8 (18th March, 2014)

11. Java version jdk17 (2021)

Features of Java

There is given many features of java. They are also known as java buzzwords.
The Java Features given below are simple and easy to understand.

1. Compile and interpreted

2. Object-Oriented

3. Portable

4. Platform independent

5. Distributed

6. Secured

7. Robust

8. Architecture neutral

9. Dynamic

10. High Performance

11. Multithreaded

KIIT Polytechnic 5

Compiled and Interpreted

Usually a computer language is either compiled or interpreted. Java combines

both these approaches thus making Java a two-stage system. First, Java compiler

translates source code into what is known as byte code instructions. Byte codes

are not machine instructions and therefore, in the second stage, Java interpreter

generates machine code that can be directly executed by the machine that is

running the Java program. We can thus say that Java is both a compiled and an

interpreted language

Platform-Independent and Portable

Java programs can be easily moved from one computer system to another,

anywhere and anytime. Changes and upgrades in operating systems, processors

and system resources will not force any changes in Java programs.

Java ensures portability in two ways. First, Java compiler generates byte code

instructions that can be implemented on any machine. Secondly, the size of the

primitive data types are machine independent

Object-Oriented

Java is a true object-oriented language. Almost everything in Java is an object.

All program code and data reside within objects and classes.

Distributed

Java is designed as a distributed language for creating applications on networks.

It has the ability to share both data and programs. Java applications can open and

access remote objects on Internet as easily as they can do in a local system. This

enables multiple programmers at multiple remote locations to collaborate and

work together on a single project.

Simple, Small and Familiar

Java is a small and simple language. Many features of C and C++ that are either

redundant or sources of unreliable code are not part of Java. For example, Java

does not use pointers, preprocessor header files, goto statement and many others.

Multithreaded and Interactive

KIIT Polytechnic 6

Multithreaded means handling multiple tasks simultaneously. Java supports

multithreaded programs. This means that we need not wait for the application to

finish one task before beginning another.

High Performance

Java performance is impressive for an interpreted language, mainly due to the use

of intermediate bytecode. According to Sun, Java speed is comparable to the

native C/C++. Java architecture is also designed to reduce overheads during

runtime.

Dynamic and Extensible

Java is a dynamic language. Java is capable of dynamically linking in new class

libraries, methods, and objects. Java can also determine the type of class through

a query, making it possible to either dynamically link or abort the program,

depending on the response.

Java Comments

The java comments are statements that are not executed by the compiler and

interpreter. The comments can be used to provide information or explanation

about the variable, method, class or any statement. It can also be used to hide

program code for specific time.

Types of Java Comments

There are 3 types of comments in java.

1. Single Line Comment

2. Multi Line Comment

3. Documentation Comment

Java Single Line Comment

The single line comment is used to comment only one line.

Syntax:

1. //This is single line comment

Example:

public class CommentExample1 {

KIIT Polytechnic 7

public static void main(String[] args) { int i=10;//Here, i is a variable

System.out.println(i);

}

}

Output:

10

Java Multi Line Comment

The multi line comment is used to comment multiple lines of code.

Syntax:

/* This is

multi line comment

*/

public class CommentExample2 {

public static void main(String[] args) {

/* Let's declare and print variable in java. */

int i=10;

System.out.println(i);

} }

Output:

10

Java Documentation Comment

The documentation comment is used to create documentation API. To create

documentation API, you need to use javadoc tool.

Syntax:

/** This is

documentation comment

*/

Example:

/** The Calculator class provides methods to get addition and subtraction of given 2

numbers.*/

KIIT Polytechnic 8

Types of Control Statements

In java, the control statements are classified as follows.

 Selection Control Statements (Decision Making Statements)

 Iterative Control Statements (Looping Statements)

 Jump Statements

Let's look at each type of control statements in java.

Selection Control Statements

In java, the selection statements are also known as decision making statements or branching statements. The

selection statements are used to select a part of the program to be executed based on a condition. Java

provides the following selection statements.

 if statement – one way decision statement

 if-else statement-two way decision statement

 nested if statement- two way decision statement

 else if ladder-multiway decision statement

 switch statement- multiway decision statement

KIIT Polytechnic 9

Iterative Control Statements

In java, the iterative statements are also known as looping statements or repetitive statements. The iterative

statements are used to execute a part of the program repeatedly as long as the given condition is true.

Using iterative statements reduces the size of the code, reduces the code complexity, makes it more

efficient, and increases the execution speed. Java provides the following iterative statements.

 while statement

 do-while statement

 for statement

 for-each statement

Jump Statements

In java, the jump statements are used to terminate a block or take the execution control to the next iteration.

Java provides the following jump statements.

 break

 continue

 return

Syntax of if statement

KIIT Polytechnic 10

Example of if statement

//WAP to input a number check whether it is divisible by 5 or not.

import java.util.Scanner;

public class A {

public static void main(String args[]) {

Scanner read = new Scanner(System.in);//it creates an object

System.out.print("Enter any number: ");

int num = read.nextInt();

if((num % 5) == 0)

{

System.out.println("Given number is divisible by 5!!");

}

System.out.println("We are outside the if-block!!!");

}

}

KIIT Polytechnic 11

Syntax of if-else statement

Example of if –else statement

import java.util.Scanner;

public class B

{

public static void main(String[] args)

{

Scanner read = new Scanner(System.in);

System.out.print("Enter any number: ");

int num = read.nextInt();

if((num % 2) == 0) {

System.out.println("We are inside the true-block!");

System.out.println("Given number is EVEN number!!");

}

else {

System.out.println("We are inside the false-block!");

System.out.println("Given number is ODD number!!");

KIIT Polytechnic 12

}

}

}

Syntax of if -else-if statement

if(condition_1){

condition_1 true-block;

...

}

else if(condition_2){

condition_2 true-block;

...

}

else if(condition_3){

condition_3 true-block;

...

}

else

statement

KIIT Polytechnic 13

Example of else-if statement

//WAP in JAVA to find out greatest among three numbers using else if ladder

import java.util.Scanner;

public class C {

public static void main(String[] args) {

int num1, num2, num3;

Scanner read = new Scanner(System.in);

System.out.print("Enter any three numbers: ");

num1 = read.nextInt();

num2 = read.nextInt();

num3 = read.nextInt();

if(num1>=num2 && num1>=num3)

System.out.println("\nThe largest number is " + num1) ;

else if (num2>=num1 && num2>=num3)

System.out.println("\nThe largest number is " + num2) ;

else

System.out.println("\nThe largest number is " + num3) ;

}

}

KIIT Polytechnic 14

//WAP to input two numbers find out addition, subtraction, multiplication and division of two numbers

using switch case

import java.util.Scanner;

class DD

{

public static void main(String args[])

{

int num1,num2,opt,res;

Scanner read = new Scanner(System.in);//it creates an object

System.out.print("Enter first number: ");

num1 = read.nextInt();

System.out.print("Enter second number: ");

num2 = read.nextInt();

System.out.println("1.add\n2.sub\n3.mul\n4.div: ");

System.out.println("Enter your choice: ");

opt = read.nextInt();

switch(opt)

{

case 1:

case 2:

case 3:

res=num1+num2;

System.out.println("sum="+res);

break;

res=num1-num2;

System.out.println("sub="+res);

break;

res=num1*num2;

System.out.println("multi="+res);

break;

KIIT Polytechnic 15

case 4:

res=num1/num2;

System.out.println("div="+res);

break;

default:

System.out.println("invalid input");

}

}

Java.util.-package

Scanner-class

nextInt()-method

java.util

Scanner

nextInt()

KIIT Polytechnic 16

What is loop?

The process of repeating a single statement or block of statements as long as the given condition

is TRUE.

Types of loop

i) while loop

ii) for loop

iii) do while loop

iv) for each loop

while loop in java

The while statement is used to execute a single statement or block of statements repeatedly as

long as the given condition is TRUE. The while statement is also known as Entry control

looping statement. The syntax and execution flow of while statement is as follows.

public class Test {

public static void main(String args[])

{

int num = 1;

KIIT Polytechnic 17

while(num <= 10) {

System.out.println(num);

num++;

}

}

}

for loop in java

The for statement is used to execute a single statement or a block of statements repeatedly as

long as the given condition is TRUE. The for statement has the following syntax and execution

flow diagram.

KIIT Polytechnic 18

public class ForTest {

public static void main(String[] args) {

for(int i = 0; i < 10; i++) {

System.out.println("i = " + i);

}

System.out.println("Statement after for!");

}

}

class k1

{

public static void main(String args[])

{

int i=1;

while(i<=3)

{

System.out.println("Hello World");

i++;

}

System.out.println("Hello KP");

}

}

KIIT Polytechnic 19

do-while loop in java

The do-while statement is used to execute a single statement or block of statements repeatedly

as long as given the condition is TRUE. The do-while statement is also known as the Exit

control looping statement. The do-while statement has the following syntax.

public class DoWhileTest {

public static void main(String[] args) {

int num = 1;

do {

System.out.println(num);

num++;

}while(num <= 10);

System.out.println("Statement after do-while!");

KIIT Polytechnic 20

} }

class k1

{

public static void main(String args[])

{

int i=1;

do

{

System.out.println("Hello World");

i++;

}while(i<=3);

System.out.println("Hello KP");

}

}

OUTPUT:

Hello World

Hello World

Hello World

Hello KP

KIIT Polytechnic 21

Arrays

Normally, an array is a collection of similar type of elements which has contiguous

memory location.

Java array is an object which contains elements of a similar data type.

Additionally, the elements of an array are stored in a contiguous memory location.

It is a data structure where we store similar elements. We can store only a fixed set

of elements in a Java array.

Array in Java is index-based, the first element of the array is stored at the 0th index,

and 2nd element is stored on 1st index and so on.

Unlike C/C++, we can get the length of the array using the length member. In

C/C++, we need to use the sizeof operator.

In Java, array is an object of a dynamically generated class. Java array inherits the

Object class, and implements the Serializable as well as Cloneable interfaces. We

can store primitive values or objects in an array in Java. Like C/C++, we can also

create single dimensional or multi-dimensional arrays in Java.

Moreover, Java provides the feature of anonymous arrays which is not available in

C/C++.

Java provides a data structure, the array, which stores a fixed-size sequential

collection of elements of the same type. An array is used to store a collection of

data, but it is often more useful to think of an array as a collection of variables of

the sametype.

Instead of declaring individual variables, such as number0, number1, ..., and

number99, you declare one array variable such as numbers and use numbers[0],

numbers[1], and ..., numbers[99] to represent individual variables. This chapter

introduces how to declare array variables, create arrays, and process arrays using

indexed variables.

Declaring and Initializing Array Variables:

To use an array in a program, you must declare a variable to reference the array,

and you must specify the type of array the variable can reference. Here is the syntax

for declaring an array variable:

dataType[] arrayRefVar; // preferred way. or

dataType arrayRefVar[]; // works but not preferred way.

KIIT Polytechnic 22

dataType [] arrayRefVar = {value0, value1, ..., valuek};

Example:

The following is examples of above syntax:

Declaration and initialization

class arr

{

public static void main(String args[])

{

int k[]={10,20,30,40};

for(int i=0;i<k.length;i++)

{

System.out.print(" "+k[i]);

}

}

}

Process

i=0<4 T

i=1<4 T

i=2<4 T

i=3<4 T

output

C:\kp>javac arr.java

C:\kp>java arr

10 20 30 40

Creating Arrays:

You can create an array by using the new operator with the following syntax:

DataType arrayRefVar = new dataType[arraySize];

The above statement does two things:

 It creates an array using new dataType[arraySize];

 It assigns the reference of the newly created array to the variable

arrayRefVar.

KIIT Polytechnic 23

Example:

Following statement declares an array variable, myList, creates an array of 10

elements of double type and assigns its reference to myList:

double [] x= new double[10];
Following picture represents array myList. Here, myList holds ten double values
and the indices are from 0 to 9.

Processing Arrays:

When processing array elements, we often use either for loop or for each loop

because all of the elements in an array are of the same type and the size of the array

is known.

Example:

Here is a complete example of showing how to create and process arrays:

import java.util.Scanner;

public class TestArray

{

public static void main(String[] args)

{

Scanner read =new Scanner(System.in);

double[] x = new double[5];

for (int i = 0; i < x.length; i++)

{

System.out.println("enter the array elements ");

x[i]=read.nextDouble();

}

// Print all the array elements

for (int i = 0; i < x.length; i++)

{

System.out.println(x[i] + " ");

}

// Sum of all elements

double total = 0;

for (int i = 0; i < x.length; i++)

{

total = total+x[i];

}

System.out.println("Total is " + total);

}

double avg=total/5;
System.out.println(avg);

}

KIIT Polytechnic 24

This would produce the following result:

C:\kp>javac TestArray.java

C:\kp>java TestArray

enter the array elements
5.5

enter the array elements

4.4

enter the array elements

6.6

enter the array elements

7.7

enter the array elements

2.2

5.5

4.4

6.6

7.7

2.2

Total is 26.4

//2D array
import java.util.Scanner;

public class TestArray

{
public static void main(String[] args)

{

Scanner read =new Scanner(System.in);

int x[][] = new int[3][3];

for (int i = 0; i < 3; i++)

{

for (int j = 0; j < 3; j++)

{

System.out.println("enter the array elements ");

x[i][j]=read.nextInt();

}

}

// Print all the array elements

int total = 0;

for (int i = 0; i < 3; i++)
{

for (int j = 0; j < 3; j++)

{

System.out.print(x[i][j] + " ");

total = total+x[i][j];

}

System.out.println("\n");

}

// Sum of all elements

KIIT Polytechnic 25

System.out.println("Total is " + total);

}

}

output

C:\kp>java TestArray

enter the array elements

1

enter the array elements

2

enter the array elements

3

enter the array elements
4

enter the array elements

5

enter the array elements

6

enter the array elements

7

enter the array elements

8

enter the array elements
9

1 2 3

4 5 6

7 8 9

Total is 45

KIIT Polytechnic 26

UNIT-III

Java Classes and Objects

Java is an object-oriented programming language. Everything in Java is associated with classes

and objects, along with its attributes and methods. For example: in real life, a car is an object.

The car has attributes, such as weight and color, and methods, such as drive and brake. A

Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

Create a class named "MyClass" with a variable x and method void disp()

class MyClass {

int x ;

void disp()

{

x=20;

System.out.println(x);

}

}

Create an Object

In Java, an object is created from a class. We have already created the class named MyClass,

so now we can use this to create objects.

To create an object of MyClass, specify the class name, followed by the object name, and use

the keyword new:

public class A{

public static void main(String[] args) {

MyClass Obj = new MyClass();

Obj.disp();

}

}

KIIT Polytechnic 27

Example of classes and object

class MyClass {

int x ;

void disp()

{

x=20;

System.out.println(x);

}

}

public class A{

public static void main(String[] args) {

MyClass Obj = new MyClass();

Obj.disp();

}

}

class Animal

{

int x,y,z ;

void sum()

{

x=20;

y=30;

z=x+y;

System.out.println("sum="+z);

}

}

public class A11

{

public static void main(String[] args)

{

Animal lion = new Animal();

lion.sum();

KIIT Polytechnic 28

}

}

// parameterized method

class Animal

{

int x,y,z ;//data memeber/instance variable/attributes

void sum(int a, int b)// method or function

{

x=a;

y=b;

z=x+y;

System.out.println("sum="+z);

}

}

public class A11

{

public static void main(String[] args)

{

Animal lion = new Animal();

lion.sum(10,20);

}

}

METHOD OVERLOADING

/*Method overloading is a concept that allows to declare multiple methods with same name but

different parameters in the same class. Method overloading is one of the ways through which java

supports polymorphism. Polymorphism is a concept of object oriented programming that deal with

multiple forms Method overloading can be done by changing number of arguments or by changing

the data type of arguments. If two or more method have same name and same parameter list but

differs in return type cannot be overloaded.*/

class Calculate

KIIT Polytechnic 29

{

void sum (int a, int b)

{

System.out.println("sum is"+(a+b)) ;

}

void sum (float a, float b)

{

System.out.println("sum is"+(a+b));

}

}

class A15

{

public static void main (String[] args)

{

Calculate cal = new Calculate();

cal.sum (8,5); //sum(int a, int b) is method is called.

cal.sum (4.6f, 3.8f); //sum(float a, float b) is called.

}

}

Find out area of the rectangle and circle using method overloading

class Calculate

{

int area(int l, int b)//Area of the rectangle

{

return(l*b);

}

double area (double r)// Area of the circle

{

return(3.141*r*r);

}

}

KIIT Polytechnic 30

class Ac1

{

public static void main (String[] args)

{

Calculate cal = new Calculate();

int a1;

double a2;

a1=cal.area (8,5);

System.out.println("the area of the rectangle="+a1);

a2= cal.area (4.6);

System.out.println("the area of the circle="+a2);

}

}

KIIT Polytechnic 31

Unit-3

CONSTRUCTOR:

A constructor is a special member function whose task is to initialize the objects of its class.

It is special because its name is the same as the class name. The constructor is invoked

whenever an object of its associated class is created. It is called constructor because it construct

the values of data members of the class.

The constructor functions have some characteristics:-

 They are invoked automatically when the objects are created.

 They don't have return types, not even void and therefore they cannot return values.

 They cannot be inherited, though a derived class can call.

Types of Constructor

1. Default constructor

The constructor having no arguments is known as default constructor.

class Calculate

{

int x,y;

Calculate ()

{

x=10;

y=20;

}

void sum ()

{

System.out.println("sum is"+(x+y));

}

}

class A16

{

public static void main (String[] args)

{

KIIT Polytechnic 32

Calculate cal = new Calculate();

cal.sum ();

}

}

2. Parameterized constructor

The constructor having arguments is known as parameterized constructor.

class Calculate

{

int x,y;

Calculate (int a, int b)

{

x=a;

y=b;

}

void sum ()

{

System.out.println("sum is"+(x+y));

}

}

class A16

{

public static void main (String[] args)

{

Calculate cal = new Calculate(10,20);

cal.sum ();

}

KIIT Polytechnic 33

}

3. Constructor overloading- Overloading refers to the use of same thing for different

purposes.

When a class contains more than one constructor with different arguments is known as

constructor overloading.

class Calculate

{

int x,y;

Calculate ()

{

x=100;

y=200;

}

Calculate (int a, int b)

{

x=a;

y=b;

}

void sum ()

{

System.out.println("sum is"+(x+y));

}

}

class A16

{

public static void main (String[] args)

{

Calculate ob1 = new Calculate();

Calculate ob2= new Calculate(10,20);

KIIT Polytechnic 34

Ob1.sum ();

Ob2.sum ();

}

}

4. Copy Constructor

A copy constructor is used to declare and initialize an object from another object.

class code

{

int id;

code (int a)

{

id=a;

}

code(code x)

{

id=x.id;

}

void display()

{

System.out.println(id);

}

}

class A19

{

public static void main (String[] args)

KIIT Polytechnic 35

{

code ob1=new code(10);

code ob2=new code(ob1);

ob1.display();

ob2.display();

}

}

Difference between constructor and method in java

Java Constructor Java Method

Constructor is used to initialize the state of an

object.
Method is used to expose behaviourof

an object.

Constructor must not have return type. Method must have return type.

Constructor is invoked implicitly. Method is invoked explicitly.

The java compiler provides a default

constructor if youdon't have any constructor.

Method is not provided by compiler inany

case.

Constructor name must be same as the class name. Method name may or may not be

KIIT Polytechnic 36

Access Modifiers in java

There are two types of modifiers in java: access modifiers and non-access modifiers.

The access modifiers in java specifies accessibility (scope) of a data member, method,

constructor or class.

There are 4 types of java access modifiers:

1. private

2. default

3. protected

4. public

private access modifier

The private access modifier is accessible only within class.

Simple example of private access modifier

In this example, we have created two classes A and Simple. A class contains private data

member and private method. We are accessing these private members from outside the class,

so there is compile time error.

class A{

private int data=40;

private void msg(){System.out.println("Hello java");} }

public class Simple{

public static void main(String args[]){ A obj=new A();

System.out.println(obj.data);//Compile Time Error obj.msg();//Compile Time Error

} }

2) default access modifier

If you don't use any modifier, it is treated as default bydefault. The default modifier is

accessible only within package.

Example of default access modifier

KIIT Polytechnic 37

In this example, we have created two packages pack and mypack. We are accessing the A class

from outside its package, since A class is not public, so it cannot be accessed from outside the

package.

//save by A.java package pack; class A{

void msg(){System.out.println("Hello");}

}

//save by B.java package mypack; import pack.*;

class B{

public static void main(String args[])

{ A obj = new A();//Compile Time Error obj.msg();//Compile Time Error

}

}

In the above example, the scope of class A and its method msg() is default so it cannot be

accessed from outside the package.

3) protected access modifier

The protected access modifier is accessible within package and outside the package but through

inheritance only.

The protected access modifier can be applied on the data member, method and constructor. It

can't be applied on the class.

Example of protected access modifier

In this example, we have created the two packages pack and mypack. The A class of pack

package is public, so can be accessed from outside the package. But msg method of this

package is declared as protected, so it can be accessed from outside the class only through

inheritance.

//save by A.java package pack; public class A{

protected void msg(){System.out.println("Hello");} }

//save by B.java package mypack; import pack.*; class B extends A{

public static void main(String args[]){ B obj = new B();

KIIT Polytechnic 38

obj.msg();

} }

Output:Hello

4) public access modifier

The public access modifier is accessible everywhere. It has the widest scope among all other

modifiers.

Example of public access modifier

public class A{

public void msg(){System.out.println("Hello");} }

class B{

public static void main(String args[]){

A obj = new A();

obj.msg();

} }

Output:Hello

KIIT Polytechnic 39

UNIT-V

INHERITANCE

 When one object acquires all the properties and behaviors of parent object i.e. known

as inheritance.

 It provides code reusability. It is used to achieve runtime polymorphism.

Benefits of Inheritance

 Reusability - facility to use public methods of base class without rewriting the same.

 Extensibility - extending the base class logic as per business logic of the derived

class.

Syntax of Java Inheritance

class Subclass-name extends Superclass-name

{

//methods and fields

}

The extends keyword indicates that you are making a new class that derives from an

existing class. The meaning of "extends" is to increase the functionality.

Terms used in Inheritance

 Class: A class is a group of objects which have common properties. It is a

template or blueprint from which objects are created.

 Sub Class/Child Class: Subclass is a class which inherits the other class. It is

also called a derived class, extended class, or child class.

 Super Class/Parent Class: Superclass is the class from where a subclass inherits

the features. It is also called a base class or a parent class.

Types of Inheritance based on the levels of inheritance and interrelation among the

classes:

KIIT Polytechnic 40

 Single Inheritance

 Multiple Inheritance

 Hierarchical Inheritance

 Multilevel Inheritance

 Hybrid Inheritance

 Multipath Inheritance

Single Inheritance: derivation of a class from only one base class.

Multiple Inheritance: derivation of a class from several (two or more) base classes.

Hierarchical Inheritance: derivation of several classes from a single base class i.e.

the traits of one class may be inherited by more than one class.

Multilevel Inheritance: derivation of a class from another derived class.

Hybrid Inheritance: derivation of a class involving more than one form of inheritance.

Hybrid Inheritance

KIIT Polytechnic 41

//Example of Single inheritance

class A

{

int x,y;

void input()

{

x=10;

y=20;

}

}

class B extends A

{

int z;

void output()

{

z=x+y;

System.out.println("Sum="+z);

}

}

class single

{

public static void main(String args[])

KIIT Polytechnic 42

{

B ob = new B();

ob.input();

ob.output();

}

}

Ouput-30

class Animal{

void eat()

{

System.out.println("eating...");

}

}

class Dog extends Animal{

void bark()

{

System.out.println("barking...");

}

}

class TestInheritance{

public static void main(String args[])

{

Dog d=new Dog();

KIIT Polytechnic 43

d.bark();

d.eat();

}

}

Output:

barking... eating...

// example of multilevel heritance

class A

{

int a,b;//data member or instance varible

void input()//method or function

{

a=10;

b=20;

}

}

class B extends A

{

int c;

void read()

{

c=30;

KIIT Polytechnic 44

}

}

class C extends B

{

int r;

void disp()

{

r=a+b+c;

System.out.println(r);

}

}

Output-60

//Multilevel inheritance

class A

{

int x,y;

void input()

{

x=10;

y=20;

}

}

class B extends A

{

KIIT Polytechnic 45

int z;

void read()

{

z=30;

}

}

class C extends B

{

int r;

void disp()

{

r=x+y+z;

System.out.println("sum="+r);

}

}

class demo6

{

public static void main(String args[])

{

C ob = new C();

ob.input();

ob.read();

ob.disp();

}

KIIT Polytechnic 46

}

class In

{

public static void main(String args[])

{

C ob=new C();

ob.input();

ob.read();

ob.disp();

}

}

//Hierarchical Inheritance

class A

{

int x,y;

void input()

{

x=10;

y=5;

}

}

KIIT Polytechnic 47

class B extends A

{

int s=0;

void sum()

{

s=x+y;

System.out.println("sum="+s);

}

}

class C extends A

{

int p=0;

void product()

{

p=x*y;

System.out.println("product="+p);

}

}

class Demo7

{

public static void main(String args[])

KIIT Polytechnic 48

{

B ob1 = new B();

C ob2 = new C();

ob1.input();

ob1.sum();

ob2.input();

ob2.product();

}

}

Output

Sum=15

Product=50

class Animal{

void eat()

{

System.out.println("eating...");

}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class Cat extends Animal{

void meow(){System.out.println("meowing...");}

}

class TestInheritance3{

KIIT Polytechnic 49

public static void main(String args[]){ Cat c=new Cat();

c.meow();

c.eat();

//c.bark();//C.T.Error

}}

Output:

meowing... eating...

super keyword in java

The super keyword in java is a reference variable which is used to refer immediate

parent class object.

Whenever you create the instance of subclass, an instance of parent class is created

implicitly which is referred by super reference variable.

Usage of java super Keyword

1. super can be used to refer immediate parent class instance variable.

2. super can be used to invoke immediate parent class method.

3. super() can be used to invoke immediate parent class constructor.

//SUPER KEYWORD IN INHERITANCE

//case I- If the super class instance variable name is same as the child class instance

variable then the super key word is used only inside the sub-class to access the super

class instance variable.

class A

KIIT Polytechnic 50

{

int x=10;

}

class B extends A

{

int x=20;

void show()

{

System.out.println(x);

System.out.println(super.x);

}

}

class S

{

public static void main(String args[])

{

B ob1= new B();

ob1.show();

}

KIIT Polytechnic 51

}

Output-

20

10

Case-II

JAVA uses super keyword for explicitly calling the super class constructor within

the child class constructor.

Class A

{

A ()

{

System.out.println (“hi”);

}

}

Class B extends A

{

B ()

{

System.out.println(“hellow”);

}

}

KIIT Polytechnic 52

Class Super1

{

B ob=new B();

}

Method Overriding

If subclass (child class) has the same method as declared in the parent class, it is known

as method overriding in Java.

Usage of Java Method Overriding

 Method overriding is used to provide the specific implementation of a method which

is already provided by its superclass.

 Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

 The method must have the same name as in the parent class

 The method must have the same parameter as in the parent class.

 There must be an IS-A relationship (inheritance)

class A

{

void show()

{

KIIT Polytechnic 53

System.out.println(" hello");

}

}

class B extends A

{

void show()

{

System.out.println("world!");

}

}

class Demo9

{

public static void main(String []args)

{

B ob=new B();

ob.show();

}

}

KIIT Polytechnic 54

final keyword

A final keyword can be used in 3 cases

Case 1- It can be used in a class. If the class is declared as final ,it cannot be inherited.

final class A

{

int x;

void input()

{

x=10;

}

}

class B extends A

{

int z;

void show()

{

z=x*x;

System.out.println("value"+z);

KIIT Polytechnic 55

}

}

class Demo11

{

public static void main(String args[])

{

B ob1 = new B();

ob1.input();

ob1.show();

}

}

Output-Error

Case- 2

If the method is declared as final then it cannot be overridden*/

class A{

final void show()

{

System.out.println("hello");

KIIT Polytechnic 56

}

}

class B extends A{

void show()

{

System.out.println("world");

}

}

class Demo12

{

public static void main(String args[])

{

B ob1 = new B();

ob1.show();

}

}

Output-Error

case-3

KIIT Polytechnic 57

If the variable is declared as final then it cannot be incremented or decremented*/

class Demo13{

public static void main(String args[])

{

final int x=5;

x++;

System.out.println("result="+x);

}

}

Output-Error

	PRINCIPLE OF OBJECT ORIENTED PROGRAMMING
	Basic concept OOPs (Object Oriented Programming System)
	Object
	Class
	Abstraction
	Encapsulation
	Inheritance
	Benefits of Inheritance
	Polymorphism
	Dynamic Binding
	Message Communication
	Compiled and Interpreted
	Platform-Independent and Portable
	Object-Oriented
	Distributed
	Simple, Small and Familiar
	Multithreaded and Interactive
	High Performance
	Dynamic and Extensible
	Java Comments
	Types of Java Comments
	Java Single Line Comment
	Syntax:
	Example:

	Java Multi Line Comment
	Syntax:
	Types of Control Statements
	Selection Control Statements
	Iterative Control Statements
	Jump Statements

	Syntax of if statement
	Syntax of if-else statement
	Syntax of if -else-if statement
	Example of else-if statement
	What is loop?
	Types of loop
	while loop in java
	for loop in java
	System.out.println("Statement after for!");
	class k1
	public static void main(String args[])
	int i=1; while(i<=3)
	System.out.println("Hello World"); i++;
	System.out.println("Hello KP");

	do-while loop in java
	Arrays
	Declaring and Initializing Array Variables:
	Processing Arrays:

	UNIT-III
	Create a Class
	Create an Object
	Example of classes and object

	Unit-3
	CONSTRUCTOR:
	Types of Constructor
	2. Parameterized constructor
	4. Copy Constructor
	Difference between constructor and method in java
	Access Modifiers in java
	UNIT-V INHERITANCE
	Benefits of Inheritance
	Syntax of Java Inheritance
	Types of Inheritance based on the levels of inheritance and interrelation among the classes:
	Hybrid Inheritance
	int x,y; void input()
	x=10; y=20;
	class B extends A
	int z;
	z=x+y; System.out.println("Sum="+z);
	class single
	public static void main(String args[])
	B ob = new B(); ob.input();
	Ouput-30
	// example of multilevel heritance
	//Multilevel inheritance
	//Hierarchical Inheritance
	int x,y; void input() (1)
	x=10; y=5;
	class B extends A (1)
	int s=0; void sum()
	s=x+y; System.out.println("sum="+s);
	class C extends A
	int p=0;
	p=x*y; System.out.println("product="+p);
	class Demo7
	public static void main(String args[]) (1)

	super keyword in java
	Usage of java super Keyword
	Case-II

	Method Overriding
	Usage of Java Method Overriding
	Rules for Java Method Overriding
	final keyword
	Case- 2
	case-3

