LESSON PLAN

Discipline: E& T.C Engg.	Semester: Third (3 rd)	Name of the Faculty: SUBRAT KUMAR KABI
Subject: Circuit Theory.	No. of days/week class allotted:	Semester from Date: 01.08.2023 to Date: 30.11.2023 No. of Weeks: 15
	Five (5)	
WEEK	CLASS DAY	THEORY TOPICS
1 st	st 1	Circuit elements (Resistance, Inductance, Capacitance), Scope of network analysis &synthesize
	2 nd	Voltage Division & Current Division, Energy Sources
	3 rd	Electric charge, electric current, Electrical energy, Electrical potential
	4 th	RLC parameters, Active& Passive Elements.
	5 th	Energy Sources, Current and voltage sources and their transformation, & Mutual Inductance
	st 1	Star – Delta transformation
2 nd	nd 2	Review Class
	3 rd	Nodal Analysis of Electrical Circuits with simple problem
	4 th	Mesh Analysis of Electrical Circuits with simple problem
	5 th	Thevenin's Theorem
	st 1	Norton's Theorem
3 rd	nd 2	Maximum Power transfer Theorem
	3 rd	Superposition Theorem
	4 th	Millman Theorem
	5 th	Reciprocity Theorem-Statement,
4 th	st 1	Explanation & applications
	2 nd	Solve numerical problems of above
	3 rd	Solve numerical problems of above

	4 th	Solve numerical problems of above
	5 th	Mothly Test
5 th	st 1	Solve numerical problems of above
	nd 2	Review Class
	3 rd	Definition of frequency, Cycle, Time period, Amplitude, Average value, RMS value, Instantaneous power & Form factor
	4 th	Reactive power, power Triangle of AC Wave
	5 th	Phasor representation of alternating quantities
	1 st	Single phase Ac circuits-Behaviors of A.C. through pure Resistor, Inductor & Capacitor
	$\overset{ ext{nd}}{2}$	DC Transients-Behaviors of RL series circuit & draw the phasor diagram and voltage triangle
6 th	3 rd	DC Transients-Behaviors of R-C series circuit & draw the phasor diagram and voltage triangle
	4 th	DC Transients-Behaviors of R-L-C series circuit & draw the phasor diagram and voltage triangle.
	5 th	Define Time Constant of the above Circuit
	st 1	Solve numerical simple problems of above Circuit
	$\overset{ ext{nd}}{2}$	Solve numerical simple problems of above Circuit
7^{th}	3 rd	Solve numerical simple problems of above Circuit
	4 th	Mothly Test
	5 th	Solve numerical simple problems of above Circuit
	st 1	Review Class
	2 nd	Introduction to resonance circuits & Resonance tuned circuit,
8 th	$\overset{\mathrm{rd}}{3}$	Series& Parallel resonance
8"	4 th	Expression for series resonance, Condition for Resonance, Frequency of Resonance,
	5 th	Impedance, Current, Voltage, power, Q Factor and Power Factor of Resonance, Bandwidth in term of Q.
	st 1	Parallel Resonance (RL&RC)& derive the expression
	$\overset{ ext{nd}}{2}$	Parallel Resonance RLC& derive the expression

	rd 3	Comparisons of Series & Parallel resonance& applications
9 th	4 th	simple problems of above Circuit
	5 th	simple problems of above Circuit
	st 1	simple problems of above Circuit
	2^{nd}	Review Class
10 th	3 rd	Introductions of Laplace Transformation
	4 th	Analysis and derive the equations for circuit parameters of Step response of R-L ckt
	5 th	Mothly Test
	1 st	Analysis and derive the equations for circuit parameters of Step response of R-C ckt
11 th	2 nd	Analysis and derive the equations for circuit parameters of Step response of R-L-C ckt
	$\overset{\mathrm{rd}}{3}$	Analysis and derive the equations for circuit parameters of Impulse response of R-L ckt
	4 th	Analysis and derive the equations for circuit parameters of Impulse response of R-C ckt
	5 th	Analysis and derive the equations for circuit parameters of Impulse response of R-L-C ckt
	st 1	Analysis and derive the equations for circuit parameters of Impulse response of R-L-C ckt (Cont)
	2^{nd}	Review Class
12 th	rd 3	Network elements, ports in Network (One port, two port),
_	4 th	Network Configurations (T & pie)
	5 th	Open circuit (Z-Parameter)& Short Circuit(Y-Parameter) Parameters- Calculate open & Short Circuit
		Parameters for Simple Circuits & its conversion
	st 1	h- parameter (hybrid parameter) Representation
	2 nd	Define T-Network & pie – Network

13 th	rd 3	Numerical problem
	4 th	
	4***	Review Class
	5 th	Ideal &Practical filters and its applications, cut off frequency, passband and stop band.
	1 st	Classify filters- low pass, high pass filters& study their Characteristics.
14 th	2 nd	band pass, band stop filters & study their Characteristics.
	3 rd	Butterworth Filter Design
	4 th	Attenuation and Gain, Bel, Decibel & neper and their relations
	5 th	Mothly test
	st 1	Attenuators& its applications. Classification-T- Type attenuators
15 th	2 nd	Classification PI – Type attenuators
	3 rd	Review Class
	4 th	Revision class
	5 th	Revision class