LESSON PLAN

Discipline: Electrical Engg.	Semester: Fifth(5th)	Name of the Faculty: RASHMI RANJAN RATH			
Subject:	No of Days/week class	Semester from Date: 15.09.2022-21.01.2023			
Digital Electronics	allotted:				
& Microprocessor	Five(5)				
WEEK	CLASS DAY	THEORY TOPICS			
	1st	Introduction.			
	2nd	Binary, Octal, Hexadecimal number systems and compare with Decimal system.			
1st	3rd	Binary addition, subtraction, Multiplication and Division.			
	4th	1's complement and 2's complement numbers for a binary number			
	5th	Use of weighted and Un-weighted codes & write Binary equivalent number for a number in 8421			
	1st	Excess-3 and Gray Code and vice-versa.			
	2nd	Importance of parity Bit.			
2nd	3rd	Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.			
	4th	Realize AND, OR, NOT operations using NAND gates.			
	5th	Realize AND, OR, NOT operations using NOR gates.			
	1st	Different postulates and De-Morgan's theorems in Boolean algebra.			
3rd	2nd	Use Of Boolean Algebra For Simplification Of Logic Expression			
	3rd	Karnaugh Map For 2&3Variable,			
	4th	Karnaugh Map For 4 Variable,			
	5th	Simplification Of SOP And POS Logic Expression Using K-Map.			
4th	1st	Review Class			
	2nd	Give the concept of Combinational Logic circuit.			
	3rd	Half adder circuit and verify its functionality using truth table.			
	4th	Realize a Half-adder using NAND gates only and NOR gates only.			
	5th	Monthly Test			
5th	1st	Full adder circuit and explain its operation with truth table.			
	2nd	Realize full-adder using two Half-adders and an OR – gate and write truth table			
	3rd	Full subtractor circuit and explain its operation with truth table.			
	4th	Operation of 4 X 1 Multiplexers and 1 X 4 DE multiplexer			
	5th	Working of Binary-Decimal Encoder & 3 X 8 Decoder.			
6th	1st	Working of Two bit magnitude comparator.			
	2nd	Review Class			
	3rd	Give the Idea of the Sequential Logic Circuits			
	4th	State the necessity of clock and give the concept of level clocking and edge triggering,			
	5th	Clocked SR flip flop with preset and clear inputs.			
	1st	Construct level clocked JK flip flop using S-R flip-flop and explain with truth table.			
7th	2nd	Concept of race around condition and study of master slave JK flip flop.			

	3rd	Give the truth tables of edge triggered D and T flip flops and o		
	A.L.	their symbols.		
	4th	Applications of flip flops.		
	5th	Monthly Test		
	1st	Define modulus of a counter		
8th	2nd	4-bit asynchronous counter and its timing diagram.		
OUI	3rd	Asynchronous decade counter.		
	4th	4-bit synchronous counter.		
	5th	Distinguish between synchronous and asynchronous counters.		
	1st	State the need for a Register and list the four types of registers.		
9th	2nd	Working of SISO, SIPO, Register with truth table using flip flop.		
901	3rd	PISO, PIPO Register with truth table using flip flop		
	4th	Review Class		
	5th	Introduction to microprocessor and microcomputer		
	1st	Architecture of Intel 8085A Microprocessor and description of each block.		
10th	2nd	Pin diagram and description.		
	3rd	Stack, Stack pointer & stack top		
	4th	Interrupts		
	5th	Monthly Test		
	1st	Opcode & Operand		
44.1	2nd	Differentiate between one byte, two byte & three byte instruction		
11th		with example.		
	3rd	Instruction set of 8085 example		
	4th	Addressing mode		
	5th	Fetch Cycle, Machine Cycle, Instruction Cycle, T-State		
	1st	Timing Diagram for memory read, memory write, I/O read, I/O write		
12th	2nd	Timing Diagram for 8085 instruction		
	3rd	Counter and time delay.		
	4th	Simple assembly language programming of 8085.		
	5th	Cont		
	1st	Review Class		
	2nd	Basics Interfacing Concepts.		
40.1	3rd	Memory mapping & I/O mapping		
13th	4th	Functional block diagram of Intel 8255		
	5th	Description of each block of Programmable peripheral interface Intel 8255		
	1st	Cont.		
	2nd	Application using 8255: Seven segment LED display,		
14th	3rd	Monthly Test		
	4th	Square wave generator		
	5th	Traffic light Controller		
	1st	Review Class		
	2nd	Revision class		
15th	3rd	Revision class		
	4th	Revision class		
	5th	Revision class		